Python 代码实现高性能异构分布式并行集群管理系统

设备管理模块

用于连接、管理集群中的异构节点,处理各节点的注册、健康检查等。

import threading

class Node:
    def __init__(self, name, is_active=True):
        self.name = name
        self.is_active = is_active

    def connect(self):
        print(f"Node {self.name} connected.")

    def check_health(self):
        return self.is_active

class ClusterManager:
    def __init__(self):
        self.nodes = []
        self.lock = threading.Lock()

    def add_node(self, node):
        with self.lock:
            self.nodes.append(node)

    def connect_all_nodes(self):
        threads = []
        for node in self.nodes:
            t = threading.Thread(target=node.connect)
            threads.append(t)
            t.start()

        for t in threads:
            t.join()

    def check_all_nodes(self):
        return all([node.check_health() for node in self.nodes])

# Example usage
manager = ClusterManager()
node1 = Node('Node1')
node2 = Node('Node2')
manager.add_node(node1)
manager.add_node(node2)

manager.connect_all_nodes()
print("All nodes healthy:", manager.check_all_nodes())

任务调度模块

负责将并行任务调度到适当的节点上,考虑异构计算资源的特性。

import random

class Task:
    def __init__(self, task_id, complexity):
        self.task_id = task_id
        self.complexity = complexity

class TaskScheduler:
    def __init__(self, nodes):
        self.nodes = nodes

    def schedule_task(self, task):
        # Simple scheduling: assign task to a random active node
        available_nodes = [node for node in self.nodes if node.is_active]
        assigned_node = random.choice(available_nodes)
        print(f"Task {task.task_id} scheduled to {assigned_node.name}")

# Example usage
scheduler = TaskScheduler(manager.nodes)
task = Task(1, "high")
scheduler.schedule_task(task)

通信模块

负责节点间的通信,支持消息传递和数据同步。

import threading

class Communication:
    def send_message(self, node, message):
        print(f"Sending message to {node.name}: {message}")

    def broadcast_message(self, nodes, message):
        threads = []
        for node in nodes:
            t = threading.Thread(target=self.send_message, args=(node, message))
            threads.append(t)
            t.start()

        for t in threads:
            t.join()

# Example usage
comm = Communication()
comm.broadcast_message(manager.nodes, "Start Task")

数据处理模块

负责在分布式环境中处理数据任务。

class DataProcessor:
    def process_data(self, data_chunk):
        print(f"Processing data: {data_chunk}")

    def distribute_data(self, nodes, data):
        # Splitting data into chunks and distributing
        chunk_size = len(data) // len(nodes)
        for i, node in enumerate(nodes):
            data_chunk = data[i*chunk_size:(i+1)*chunk_size]
            self.process_data(data_chunk)

# Example usage
data = [i for i in range(100)]
processor = DataProcessor()
processor.distribute_data(manager.nodes, data)

监控和负载均衡模块

实时监控集群节点的状态,动态调整任务分配,保证资源利用率最大化。

class LoadBalancer:
    def __init__(self, nodes):
        self.nodes = nodes

    def get_least_loaded_node(self):
        # Dummy implementation: return first active node
        active_nodes = [node for node in self.nodes if node.is_active]
        return active_nodes[0] if active_nodes else None

class Monitoring:
    def monitor_nodes(self, nodes):
        for node in nodes:
            status = "active" if node.check_health() else "inactive"
            print(f"Node {node.name} status: {status}")

# Example usage
monitoring = Monitoring()
load_balancer = LoadBalancer(manager.nodes)

monitoring.monitor_nodes(manager.nodes)
node = load_balancer.get_least_loaded_node()
print(f"Assigning task to least loaded node: {node.name}")

存储模块

负责处理分布式系统中的数据存储,支持分布式文件系统或数据库。

import os

class DistributedStorage:
    def __init__(self, storage_dir):
        self.storage_dir = storage_dir
        if not os.path.exists(storage_dir):
            os.makedirs(storage_dir)

    def store_data(self, node, data):
        file_path = os.path.join(self.storage_dir, f"{node.name}_data.txt")
        with open(file_path, 'w') as f:
            f.write(data)
        print(f"Data stored in {file_path}")

    def retrieve_data(self, node):
        file_path = os.path.join(self.storage_dir, f"{node.name}_data.txt")
        if os.path.exists(file_path):
            with open(file_path, 'r') as f:
                data = f.read()
            print(f"Data retrieved from {file_path}: {data}")
        else:
            print(f"No data found for {node.name}")

# Example usage
storage = DistributedStorage('distributed_storage')
storage.store_data(node1, "Node1 data")
storage.retrieve_data(node1)

代码总结

这些模块分别处理集群管理中的不同功能:设备管理、任务调度、通信、数据处理、监控和负载均衡,以及数据存储。通过异步和多线程技术,系统能够在异构分布式集群中实现高效的任务调度和管理。

C++ 代码实现高性能异构分布式并行集群管理系统

设备管理模块

用于连接、管理集群中的异构节点,处理各节点的注册、健康检查等。

#include <iostream>
#include <vector>
#include <thread>
#include <mutex>

class Node {
public:
    std::string name;
    bool is_active;

    Node(const std::string &name) : name(name), is_active(true) {}

    void connect() {
        std::cout << "Node " << name << " connected." << std::endl;
    }

    bool check_health() const {
        return is_active;
    }
};

class ClusterManager {
private:
    std::vector<Node> nodes;
    std::mutex lock;

public:
    void add_node(const Node &node) {
        std::lock_guard<std::mutex> guard(lock);
        nodes.push_back(node);
    }

    void connect_all_nodes() {
        std::vector<std::thread> threads;
        for (auto &node : nodes) {
            threads.emplace_back(&Node::connect, &node);
        }
        for (auto &t : threads) {
            t.join();
        }
    }

    bool check_all_nodes() const {
        for (const auto &node : nodes) {
            if (!node.check_health()) {
                return false;
            }
        }
        return true;
    }

    const std::vector<Node>& get_nodes() const {
        return nodes;
    }
};

// Example usage
int main() {
    ClusterManager manager;
    Node node1("Node1");
    Node node2("Node2");
    
    manager.add_node(node1);
    manager.add_node(node2);

    manager.connect_all_nodes();
    std::cout << "All nodes healthy: " << (manager.check_all_nodes() ? "Yes" : "No") << std::endl;
    return 0;
}

任务调度模块

负责将并行任务调度到适当的节点上,考虑异构计算资源的特性。

#include <iostream>
#include <vector>
#include <random>

class Task {
public:
    int task_id;
    std::string complexity;

    Task(int id, const std::string &complexity) : task_id(id), complexity(complexity) {}
};

class TaskScheduler {
private:
    std::vector<Node> nodes;

public:
    explicit TaskScheduler(const std::vector<Node> &nodes) : nodes(nodes) {}

    void schedule_task(const Task &task) {
        // Simple scheduling: assign task to a random active node
        std::vector<Node> active_nodes;
        for (const auto &node : nodes) {
            if (node.is_active) {
                active_nodes.push_back(node);
            }
        }

        if (!active_nodes.empty()) {
            int idx = rand() % active_nodes.size();
            std::cout << "Task " << task.task_id << " scheduled to " << active_nodes[idx].name << std::endl;
        } else {
            std::cout << "No active nodes available." << std::endl;
        }
    }
};

// Example usage
int main() {
    ClusterManager manager;
    Node node1("Node1");
    Node node2("Node2");
    manager.add_node(node1);
    manager.add_node(node2);

    manager.connect_all_nodes();
    
    Task task1(1, "high");
    TaskScheduler scheduler(manager.get_nodes());
    scheduler.schedule_task(task1);
    
    return 0;
}

通信模块

负责节点间的通信,支持消息传递和数据同步。

#include <iostream>
#include <vector>
#include <thread>

class Communication {
public:
    void send_message(const Node &node, const std::string &message) {
        std::cout << "Sending message to " << node.name << ": " << message << std::endl;
    }

    void broadcast_message(const std::vector<Node> &nodes, const std::string &message) {
        std::vector<std::thread> threads;
        for (const auto &node : nodes) {
            threads.emplace_back(&Communication::send_message, this, node, message);
        }
        for (auto &t : threads) {
            t.join();
        }
    }
};

// Example usage
int main() {
    ClusterManager manager;
    Node node1("Node1");
    Node node2("Node2");
    manager.add_node(node1);
    manager.add_node(node2);

    manager.connect_all_nodes();
    
    Communication comm;
    comm.broadcast_message(manager.get_nodes(), "Start Task");
    
    return 0;
}

数据处理模块

负责在分布式环境中处理数据任务。

#include <iostream>
#include <vector>

class DataProcessor {
public:
    void process_data(const std::string &data_chunk) {
        std::cout << "Processing data: " << data_chunk << std::endl;
    }

    void distribute_data(const std::vector<Node> &nodes, const std::vector<std::string> &data) {
        size_t chunk_size = data.size() / nodes.size();
        for (size_t i = 0; i < nodes.size(); ++i) {
            std::string data_chunk = data[i * chunk_size];
            process_data(data_chunk);
        }
    }
};

// Example usage
int main() {
    ClusterManager manager;
    Node node1("Node1");
    Node node2("Node2");
    manager.add_node(node1);
    manager.add_node(node2);

    manager.connect_all_nodes();
    
    std::vector<std::string> data = {"chunk1", "chunk2"};
    DataProcessor processor;
    processor.distribute_data(manager.get_nodes(), data);
    
    return 0;
}

监控和负载均衡模块

实时监控集群节点的状态,动态调整任务分配,保证资源利用率最大化。

#include <iostream>
#include <vector>

class LoadBalancer {
private:
    std::vector<Node> nodes;

public:
    explicit LoadBalancer(const std::vector<Node> &nodes) : nodes(nodes) {}

    Node get_least_loaded_node() {
        // Dummy implementation: return first active node
        for (const auto &node : nodes) {
            if (node.is_active) {
                return node;
            }
        }
        return Node("No available nodes");
    }
};

class Monitoring {
public:
    void monitor_nodes(const std::vector<Node> &nodes) {
        for (const auto &node : nodes) {
            std::string status = node.check_health() ? "active" : "inactive";
            std::cout << "Node " << node.name << " status: " << status << std::endl;
        }
    }
};

// Example usage
int main() {
    ClusterManager manager;
    Node node1("Node1");
    Node node2("Node2");
    manager.add_node(node1);
    manager.add_node(node2);

    manager.connect_all_nodes();
    
    Monitoring monitoring;
    LoadBalancer load_balancer(manager.get_nodes());
    
    monitoring.monitor_nodes(manager.get_nodes());
    Node least_loaded_node = load_balancer.get_least_loaded_node();
    std::cout << "Assigning task to least loaded node: " << least_loaded_node.name << std::endl;
    
    return 0;
}

存储模块

负责处理分布式系统中的数据存储,支持分布式文件系统或数据库。

#include <iostream>
#include <fstream>
#include <string>

class DistributedStorage {
private:
    std::string storage_dir;

public:
    explicit DistributedStorage(const std::string &dir) : storage_dir(dir) {}

    void store_data(const Node &node, const std::string &data) {
        std::ofstream file(storage_dir + "/" + node.name + "_data.txt");
        if (file.is_open()) {
            file << data;
            file.close();
            std::cout << "Data stored for " << node.name << std::endl;
        }
    }

    void retrieve_data(const Node &node) {
        std::ifstream file(storage_dir + "/" + node.name + "_data.txt");
        if (file.is_open()) {
            std::string data;
            file >> data;
            std::cout << "Data retrieved from " << node.name << ": " << data << std::endl;
            file.close();
        } else {
            std::cout << "No data found for " << node.name << std::endl;
        }
    }
};

// Example usage
int main() {
    ClusterManager manager;
    Node node1("Node1");
    Node node2("Node2");
    manager.add_node(node1);
    manager.add_node(node2);

    manager.connect_all_nodes();
    
    DistributedStorage storage("distributed_storage");
    storage.store_data(node1, "Node1 data");
    storage.retrieve_data(node1);
    
    return 0;
}

总结

这些C++模块分别实现了集群设备管理、任务调度、通信、数据处理、监控和负载均衡以及数据存储功能。这些模块协同工作,使得异构分布式并行集群管理系统具备高效的管理与处理能力。