Python 代码实现高性能异构漏洞检测系统

数据预处理模块:

数据加载 数据清洗 数据格式化

import pandas as pd
import numpy as np

def load_data(file_path):
    return pd.read_csv(file_path)

def clean_data(data):
    data = data.dropna()  # Remove missing values
    data = data.drop_duplicates()  # Remove duplicate entries
    return data

def format_data(data):
    # Example of data formatting, e.g., encoding categorical variables
    data['category'] = data['category'].astype('category').cat.codes
    return data

特征提取模块:

静态特征提取 动态特征提取

import hashlib

def static_feature_extraction(data):
    # Example: Extract hash of the file as a static feature
    data['file_hash'] = data['file_path'].apply(lambda x: hashlib.md5(open(x,'rb').read()).hexdigest())
    return data

def dynamic_feature_extraction(data):
    # Example: Extract runtime behavior (e.g., system calls)
    # This is a placeholder for actual dynamic analysis which can be complex
    data['dynamic_feature'] = data['file_path'].apply(lambda x: simulate_dynamic_analysis(x))
    return data

def simulate_dynamic_analysis(file_path):
    # Placeholder for dynamic analysis
    return np.random.rand()

模型训练模块:

模型选择 模型训练 模型评估

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

def train_model(features, labels):
    X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
    
    model = RandomForestClassifier(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)
    
    predictions = model.predict(X_test)
    print(classification_report(y_test, predictions))
    
    return model

漏洞检测模块:

输入数据检测 漏洞分类 报告生成

def detect_vulnerabilities(model, new_data):
    features = new_data[['static_feature', 'dynamic_feature']]
    predictions = model.predict(features)
    new_data['vulnerability'] = predictions
    return new_data

def classify_vulnerability(data):
    data['vuln_classification'] = data['vulnerability'].apply(lambda x: 'Critical' if x == 1 else 'Non-Critical')
    return data

def generate_report(data):
    report = data[['file_path', 'vuln_classification']]
    report.to_csv('vulnerability_report.csv', index=False)
    print("Report generated: vulnerability_report.csv")

结果分析模块:

结果汇总 结果可视化 报告生成

import matplotlib.pyplot as plt

def summarize_results(data):
    summary = data['vuln_classification'].value_counts()
    print(summary)
    return summary

def visualize_results(summary):
    summary.plot(kind='bar')
    plt.xlabel('Vulnerability Classification')
    plt.ylabel('Number of Files')
    plt.title('Vulnerability Detection Summary')
    plt.show()

def generate_summary_report(data):
    summary = summarize_results(data)
    visualize_results(summary)
    summary.to_csv('summary_report.csv', index=False)
    print("Summary report generated: summary_report.csv")

综合脚本

def main():
    # Load and preprocess data
    data = load_data('input_files.csv')
    data = clean_data(data)
    data = format_data(data)
    
    # Feature extraction
    data = static_feature_extraction(data)
    data = dynamic_feature_extraction(data)
    
    # Model training
    features = data[['static_feature', 'dynamic_feature']]
    labels = data['vulnerability_label']
    model = train_model(features, labels)
    
    # Vulnerability detection
    new_data = load_data('new_files.csv')
    new_data = clean_data(new_data)
    new_data = format_data(new_data)
    new_data = static_feature_extraction(new_data)
    new_data = dynamic_feature_extraction(new_data)
    
    detected_data = detect_vulnerabilities(model, new_data)
    detected_data = classify_vulnerability(detected_data)
    generate_report(detected_data)
    
    # Results analysis
    generate_summary_report(detected_data)

if __name__ == "__main__":
    main()

这个脚本假设你有两个数据文件:input_files.csv(用于训练模型的输入文件)和 new_files.csv(用于检测的新文件)。脚本会加载数据、预处理、提取特征、训练模型、检测漏洞并生成报告。你可以根据需要调整这些步骤中的细节和逻辑。

C++ 代码实现高性能异构漏洞检测系统

数据预处理模块:

数据加载 数据清洗 数据格式化

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>
#include <algorithm>

std::vector<std::vector<std::string>> loadData(const std::string& filePath) {
    std::vector<std::vector<std::string>> data;
    std::ifstream file(filePath);
    std::string line;

    while (std::getline(file, line)) {
        std::vector<std::string> row;
        std::stringstream ss(line);
        std::string value;
        while (std::getline(ss, value, ',')) {
            row.push_back(value);
        }
        data.push_back(row);
    }
    return data;
}

std::vector<std::vector<std::string>> cleanData(std::vector<std::vector<std::string>>& data) {
    data.erase(std::remove_if(data.begin(), data.end(), [](const std::vector<std::string>& row) {
        return row.empty() || std::any_of(row.begin(), row.end(), [](const std::string& value) { return value.empty(); });
    }), data.end());
    return data;
}

std::vector<std::vector<std::string>> formatData(std::vector<std::vector<std::string>>& data) {
    // Example formatting: converting to lower case
    for (auto& row : data) {
        for (auto& value : row) {
            std::transform(value.begin(), value.end(), value.begin(), ::tolower);
        }
    }
    return data;
}

特征提取模块:

静态特征提取 动态特征提取

#include <openssl/md5.h>
#include <iomanip>

std::string hashFile(const std::string& filePath) {
    std::ifstream file(filePath, std::ios::binary);
    MD5_CTX md5Context;
    MD5_Init(&md5Context);
    char buffer[1024];
    while (file.read(buffer, sizeof(buffer))) {
        MD5_Update(&md5Context, buffer, file.gcount());
    }
    unsigned char result[MD5_DIGEST_LENGTH];
    MD5_Final(result, &md5Context);

    std::stringstream ss;
    for (int i = 0; i < MD5_DIGEST_LENGTH; ++i) {
        ss << std::hex << std::setw(2) << std::setfill('0') << (int)result[i];
    }
    return ss.str();
}

std::vector<std::string> staticFeatureExtraction(const std::vector<std::string>& filePaths) {
    std::vector<std::string> hashes;
    for (const auto& filePath : filePaths) {
        hashes.push_back(hashFile(filePath));
    }
    return hashes;
}

// Placeholder for dynamic feature extraction
std::vector<float> dynamicFeatureExtraction(const std::vector<std::string>& filePaths) {
    std::vector<float> features(filePaths.size(), 0.5f); // Placeholder values
    return features;
}

模型训练模块:

模型选择 模型训练 模型评估

#include <opencv2/opencv.hpp>
#include <opencv2/ml/ml.hpp>

using namespace cv;
using namespace cv::ml;

Ptr<RTrees> trainModel(const Mat& features, const Mat& labels) {
    Ptr<RTrees> model = RTrees::create();
    model->setMaxDepth(10);
    model->setMinSampleCount(10);
    model->setRegressionAccuracy(0);
    model->setUseSurrogates(false);
    model->setMaxCategories(15);
    model->setPriors(Mat());
    model->setCalculateVarImportance(true);
    model->setActiveVarCount(4);
    model->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 100, 0.01));

    model->train(features, ROW_SAMPLE, labels);
    return model;
}

漏洞检测模块:

输入数据检测 漏洞分类 报告生成

std::vector<int> detectVulnerabilities(Ptr<RTrees> model, const Mat& features) {
    std::vector<int> predictions;
    for (int i = 0; i < features.rows; ++i) {
        predictions.push_back((int)model->predict(features.row(i)));
    }
    return predictions;
}

std::vector<std::string> classifyVulnerability(const std::vector<int>& vulnerabilities) {
    std::vector<std::string> classifications;
    for (const auto& vuln : vulnerabilities) {
        classifications.push_back(vuln == 1 ? "Critical" : "Non-Critical");
    }
    return classifications;
}

void generateReport(const std::vector<std::string>& filePaths, const std::vector<std::string>& classifications) {
    std::ofstream report("vulnerability_report.csv");
    report << "File Path,Vulnerability Classification\n";
    for (size_t i = 0; i < filePaths.size(); ++i) {
        report << filePaths[i] << "," << classifications[i] << "\n";
    }
    report.close();
    std::cout << "Report generated: vulnerability_report.csv\n";
}

结果分析模块:

结果汇总 结果可视化 报告生成

void summarizeResults(const std::vector<std::string>& classifications) {
    int criticalCount = std::count(classifications.begin(), classifications.end(), "Critical");
    int nonCriticalCount = classifications.size() - criticalCount;

    std::cout << "Critical Vulnerabilities: " << criticalCount << "\n";
    std::cout << "Non-Critical Vulnerabilities: " << nonCriticalCount << "\n";
}

void visualizeResults(const std::vector<std::string>& classifications) {
    int criticalCount = std::count(classifications.begin(), classifications.end(), "Critical");
    int nonCriticalCount = classifications.size() - criticalCount;

    // Simple text-based visualization
    std::cout << "Critical: " << std::string(criticalCount, '*') << "\n";
    std::cout << "Non-Critical: " << std::string(nonCriticalCount, '*') << "\n";
}

综合脚本

int main() {
    // Load and preprocess data
    auto data = loadData("input_files.csv");
    data = cleanData(data);
    data = formatData(data);

    // Feature extraction
    std::vector<std::string> filePaths;
    for (const auto& row : data) {
        filePaths.push_back(row[0]);
    }
    auto staticFeatures = staticFeatureExtraction(filePaths);
    auto dynamicFeatures = dynamicFeatureExtraction(filePaths);

    // Prepare data for model training
    Mat features(staticFeatures.size(), 2, CV_32F);
    for (size_t i = 0; i < staticFeatures.size(); ++i) {
        features.at<float>(i, 0) = std::stof(staticFeatures[i]);
        features.at<float>(i, 1) = dynamicFeatures[i];
    }

    Mat labels(staticFeatures.size(), 1, CV_32S);
    for (size_t i = 0; i < data.size(); ++i) {
        labels.at<int>(i, 0) = std::stoi(data[i][1]);
    }

    // Train model
    auto model = trainModel(features, labels);

    // Load new data for vulnerability detection
    auto newData = loadData("new_files.csv");
    newData = cleanData(newData);
    newData = formatData(newData);

    std::vector<std::string> newFilePaths;
    for (const auto& row : newData) {
        newFilePaths.push_back(row[0]);
    }
    auto newStaticFeatures = staticFeatureExtraction(newFilePaths);
    auto newDynamicFeatures = dynamicFeatureExtraction(newFilePaths);

    // Prepare new data for detection
    Mat newFeatures(newStaticFeatures.size(), 2, CV_32F);
    for (size_t i = 0; i < newStaticFeatures.size(); ++i) {
        newFeatures.at<float>(i, 0) = std::stof(newStaticFeatures[i]);
        newFeatures.at<float>(i, 1) = newDynamicFeatures[i];
    }

    // Detect vulnerabilities
    auto vulnerabilities = detectVulnerabilities(model, newFeatures);
    auto classifications = classifyVulnerability(vulnerabilities);
    generateReport(newFilePaths, classifications);

    // Analyze results
    summarizeResults(classifications);
    visualizeResults(classifications);

    return 0;
}

这个C++代码示例假设你有两个数据文件:input_files.csv(用于训练模型的输入文件)和 new_files.csv(用于检测的新文件)。代码会加载数据、预处理、提取特征、训练模型、检测漏洞并生成报告。你可以根据需要调整这些步骤中的细节