Python 代码实现高性能异构物理模拟系统

音频预处理模块

使用CPU进行音频的加载、预处理和特征提取。

import numpy as np
import librosa

def preprocess_audio(file_path):
    # 使用CPU进行音频加载和预处理
    y, sr = librosa.load(file_path, sr=None)
    # 提取梅尔频谱特征
    mel_spectrogram = librosa.feature.melspectrogram(y, sr=sr, n_mels=128, fmax=8000)
    log_mel_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
    return log_mel_spectrogram, sr

特征处理模块

使用GPU进行特征处理和加速计算。

import cupy as cp

def process_features(features):
    # 使用GPU进行特征处理和加速计算
    features_gpu = cp.asarray(features)
    # 归一化处理
    mean = cp.mean(features_gpu, axis=1, keepdims=True)
    std = cp.std(features_gpu, axis=1, keepdims=True)
    normalized_features = (features_gpu - mean) / std
    return cp.asnumpy(normalized_features)

语音识别模块

使用深度学习模型在GPU/TPU上进行语音识别。

import torch
from deepspeech import Model

def load_model(model_path, device):
    # 加载预训练的语音识别模型到GPU/TPU上
    model = Model(model_path)
    model.to(device)
    return model

def recognize_speech(model, features, device):
    # 使用模型在GPU/TPU上进行语音识别
    features_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0).to(device)
    with torch.no_grad():
        output = model(features_tensor)
    return output

结果后处理模块

使用CPU进行结果的后处理和展示。

import numpy as np

def decode_output(output):
    # 将模型输出解码为文本
    decoded_text = output.cpu().numpy().argmax(axis=2)[0]
    text = ''.join([chr(c) for c in decoded_text])
    return text

主函数

def main(audio_file_path, model_path):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # 1. 音频预处理
    features, sr = preprocess_audio(audio_file_path)
    
    # 2. 特征处理
    processed_features = process_features(features)
    
    # 3. 加载语音识别模型
    model = load_model(model_path, device)
    
    # 4. 进行语音识别
    output = recognize_speech(model, processed_features, device)
    
    # 5. 结果后处理
    recognized_text = decode_output(output)
    
    print(f"Recognized Text: {recognized_text}")

if __name__ == "__main__":
    audio_file_path = "path/to/audio/file.wav"
    model_path = "path/to/deepspeech/model"
    main(audio_file_path, model_path)

通过这种模块化设计,系统可以高效地利用异构计算资源,实现高性能的语音识别和处理。不同模块之间的接口清晰,便于维护和扩展。

C++ 代码实现高性能异构物理模拟系统

音频预处理模块

使用CPU进行音频的加载、预处理和特征提取。

#include <sndfile.hh>
#include <fftw3.h>
#include <vector>
#include <cmath>
#include <iostream>

std::vector<std::vector<double>> preprocess_audio(const std::string& file_path, int& sample_rate) {
    SndfileHandle file(file_path);
    sample_rate = file.samplerate();
    int num_frames = file.frames();
    int num_channels = file.channels();
    std::vector<double> audio_data(num_frames * num_channels);
    file.read(audio_data.data(), num_frames * num_channels);

    // Convert to mono if necessary
    if (num_channels > 1) {
        for (int i = 0; i < num_frames; ++i) {
            audio_data[i] = 0.5 * (audio_data[i * num_channels] + audio_data[i * num_channels + 1]);
        }
        audio_data.resize(num_frames);
    }

    // FFT and mel-spectrogram computation (simplified example)
    int n_fft = 2048;
    int hop_length = 512;
    int n_mels = 128;
    int num_windows = (num_frames - n_fft) / hop_length + 1;
    std::vector<std::vector<double>> mel_spectrogram(n_mels, std::vector<double>(num_windows, 0.0));

    // Perform FFT and calculate mel-spectrogram here (simplified example)
    // ...

    return mel_spectrogram;
}

特征处理模块

使用GPU进行特征处理和加速计算。

#include <cuda_runtime.h>
#include <vector>
#include <iostream>

__global__ void normalize_features(double* features, double* mean, double* std, int rows, int cols) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < rows * cols) {
        int row = idx / cols;
        features[idx] = (features[idx] - mean[row]) / std[row];
    }
}

std::vector<std::vector<double>> process_features(const std::vector<std::vector<double>>& features) {
    int rows = features.size();
    int cols = features[0].size();
    std::vector<double> features_flat(rows * cols);
    for (int i = 0; i < rows; ++i) {
        for (int j = 0; j < cols; ++j) {
            features_flat[i * cols + j] = features[i][j];
        }
    }

    double* d_features;
    cudaMalloc(&d_features, rows * cols * sizeof(double));
    cudaMemcpy(d_features, features_flat.data(), rows * cols * sizeof(double), cudaMemcpyHostToDevice);

    double* d_mean;
    double* d_std;
    cudaMalloc(&d_mean, rows * sizeof(double));
    cudaMalloc(&d_std, rows * sizeof(double));

    // Calculate mean and std here (simplified example)
    // ...

    normalize_features<<<(rows * cols + 255) / 256, 256>>>(d_features, d_mean, d_std, rows, cols);

    cudaMemcpy(features_flat.data(), d_features, rows * cols * sizeof(double), cudaMemcpyDeviceToHost);
    cudaFree(d_features);
    cudaFree(d_mean);
    cudaFree(d_std);

    std::vector<std::vector<double>> normalized_features(rows, std::vector<double>(cols));
    for (int i = 0; i < rows; ++i) {
        for (int j = 0; j < cols; ++j) {
            normalized_features[i][j] = features_flat[i * cols + j];
        }
    }

    return normalized_features;
}

语音识别模块

使用深度学习模型在GPU/TPU上进行语音识别。

#include <torch/torch.h>
#include <torch/script.h>

torch::jit::script::Module load_model(const std::string& model_path, torch::Device& device) {
    torch::jit::script::Module model = torch::jit::load(model_path);
    model.to(device);
    return model;
}

std::vector<int64_t> recognize_speech(torch::jit::script::Module& model, const std::vector<std::vector<double>>& features, torch::Device& device) {
    std::vector<int64_t> recognized_text;
    torch::Tensor features_tensor = torch::from_blob(features.data(), {1, features.size(), features[0].size()}).to(device);

    std::vector<torch::jit::IValue> inputs;
    inputs.push_back(features_tensor);
    torch::Tensor output = model.forward(inputs).toTensor();

    auto output_cpu = output.cpu();
    auto max_result = output_cpu.argmax(2);
    auto accessor = max_result.accessor<int64_t, 2>();
    for (int i = 0; i < accessor.size(1); ++i) {
        recognized_text.push_back(accessor[0][i]);
    }

    return recognized_text;
}

结果后处理模块

使用CPU进行结果的后处理和展示。

#include <vector>
#include <string>
#include <iostream>

std::string decode_output(const std::vector<int64_t>& output) {
    std::string decoded_text;
    for (auto& c : output) {
        decoded_text += static_cast<char>(c);
    }
    return decoded_text;
}

主函数

int main(int argc, char* argv[]) {
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " <audio_file_path> <model_path>" << std::endl;
        return 1;
    }

    std::string audio_file_path = argv[1];
    std::string model_path = argv[2];

    int sample_rate;
    auto features = preprocess_audio(audio_file_path, sample_rate);

    auto processed_features = process_features(features);

    torch::Device device(torch::kCUDA);
    auto model = load_model(model_path, device);

    auto recognized_output = recognize_speech(model, processed_features, device);

    auto recognized_text = decode_output(recognized_output);

    std::cout << "Recognized Text: " << recognized_text << std::endl;

    return 0;
}

通过这种模块化设计,系统可以高效地利用异构计算资源,实现高性能的语音识别和处理。不同模块之间的接口清晰,便于维护和扩展。