目录
torch.manual_seed(seed)[source]
torch.set_rng_state(new_state)[source]
torch.default_generator Returns the default CPU torch.Generator
torch.bernoulli(input, *, generator=None, out=None) → Tensor
torch.multinomial(input, num_samples, replacement=False, out=None) → LongTensor
torch.normal(mean=0.0, std, out=None) → Tensor
torch.normal(mean, std=1.0, out=None) → Tensor
torch.normal(mean, std, size, *, out=None) → Tensor
torch.rand_like(input, dtype=None, layout=None, device=None, requires_grad=False) → Tensor
torch.randn_like(input, dtype=None, layout=None, device=None, requires_grad=False) → Tensor
class torch.quasirandom.SobolEngine(dimension, scramble=False, seed=None)[source]
draw(n=1, out=None, dtype=torch.float32)[source]
torch.
seed
()[source]
Sets the seed for generating random numbers to a non-deterministic random number. Returns a 64 bit number used to seed the RNG.
torch.
manual_seed
(seed)[source]
Sets the seed for generating random numbers. Returns a torch.Generator object.
Parameters
seed (int) – The desired seed.
torch.
initial_seed
()[source]
Returns the initial seed for generating random numbers as a Python long.
torch.
get_rng_state
()[source]
Returns the random number generator state as a torch.ByteTensor.
torch.
set_rng_state
(new_state)[source]
Sets the random number generator state.
Parameters
new_state (torch.ByteTensor) – The desired state
torch.
default_generator
Returns the default CPU torch.Generator
torch.
bernoulli
(input, *, generator=None, out=None) → Tensor
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The input
tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in input
have to be in the range: 0≤inputi≤10 \leq \text{input}_i \leq 10≤inputi≤1 .
The ith\text{i}^{th}ith element of the output tensor will draw a value 111 according to the ith\text{i}^{th}ith probability value given in input
.
outi∼Bernoulli(p=inputi)\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) outi∼Bernoulli(p=inputi)
The returned out
tensor only has values 0 or 1 and is of the same shape as input
.
out
can have integral dtype
, but input
must have floating point dtype
.
Parameters
-
input (Tensor) – the input tensor of probability values for the Bernoulli distribution
-
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737, 0.0950, 0.3609],
[ 0.7148, 0.0289, 0.2676],
[ 0.9456, 0.8937, 0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1., 0., 0.],
[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
torch.
multinomial
(input, num_samples, replacement=False, out=None) → LongTensor
Returns a tensor where each row contains num_samples
indices sampled from the multinomial probability distribution located in the corresponding row of tensor input
.
Note
The rows of input
do not need to sum to one (in which case we use the values as weights), but must be non-negative, finite and have a non-zero sum.
Indices are ordered from left to right according to when each was sampled (first samples are placed in first column).
If input
is a vector, out
is a vector of size num_samples
.
If input
is a matrix with m rows, out
is an matrix of shape (m×num_samples)(m \times \text{num\_samples})(m×num_samples) .
If replacement is True
, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row.
Note
When drawn without replacement, num_samples
must be lower than number of non-zero elements in input
(or the min number of non-zero elements in each row of input
if it is a matrix).
Parameters
-
input (Tensor) – the input tensor containing probabilities
-
num_samples (int) – number of samples to draw
-
replacement (bool, optional) – whether to draw with replacement or not
-
out (Tensor, optional) – the output tensor.
Example:
>>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights
>>> torch.multinomial(weights, 2)
tensor([1, 2])
>>> torch.multinomial(weights, 4) # ERROR!
RuntimeError: invalid argument 2: invalid multinomial distribution (with replacement=False,
not enough non-negative category to sample) at ../aten/src/TH/generic/THTensorRandom.cpp:320
>>> torch.multinomial(weights, 4, replacement=True)
tensor([ 2, 1, 1, 1])
torch.
normal
()
torch.
normal
(mean, std, out=None) → Tensor
Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given.
The mean
is a tensor with the mean of each output element’s normal distribution
The std
is a tensor with the standard deviation of each output element’s normal distribution
The shapes of mean
and std
don’t need to match, but the total number of elements in each tensor need to be the same.
Note
When the shapes do not match, the shape of mean
is used as the shape for the returned output tensor
Parameters
-
mean (Tensor) – the tensor of per-element means
-
std (Tensor) – the tensor of per-element standard deviations
-
out (Tensor, optional) – the output tensor.
Example:
>>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1))
tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134,
8.0505, 8.1408, 9.0563, 10.0566])
torch.
normal
(mean=0.0, std, out=None) → Tensor
Similar to the function above, but the means are shared among all drawn elements.
Parameters
-
mean (float, optional) – the mean for all distributions
-
std (Tensor) – the tensor of per-element standard deviations
-
out (Tensor, optional) – the output tensor.
Example:
>>> torch.normal(mean=0.5, std=torch.arange(1., 6.))
tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303])
torch.
normal
(mean, std=1.0, out=None) → Tensor
Similar to the function above, but the standard-deviations are shared among all drawn elements.
Parameters
-
mean (Tensor) – the tensor of per-element means
-
std (float, optional) – the standard deviation for all distributions
-
out (Tensor, optional) – the output tensor
Example:
>>> torch.normal(mean=torch.arange(1., 6.))
tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361])
torch.
normal
(mean, std, size, *, out=None) → Tensor
Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by size
.
Parameters
-
mean (float) – the mean for all distributions
-
std (float) – the standard deviation for all distributions
-
size (int...) – a sequence of integers defining the shape of the output tensor.
-
out (Tensor, optional) – the output tensor.
Example:
>>> torch.normal(2, 3, size=(1, 4))
tensor([[-1.3987, -1.9544, 3.6048, 0.7909]])
torch.
rand
(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Returns a tensor filled with random numbers from a uniform distribution on the interval [0,1)[0, 1)[0,1)
The shape of the tensor is defined by the variable argument size
.
Parameters
-
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
-
out (Tensor, optional) – the output tensor.
-
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). -
layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.rand(4)
tensor([ 0.5204, 0.2503, 0.3525, 0.5673])
>>> torch.rand(2, 3)
tensor([[ 0.8237, 0.5781, 0.6879],
[ 0.3816, 0.7249, 0.0998]])
torch.
rand_like
(input, dtype=None, layout=None, device=None, requires_grad=False) → Tensor
Returns a tensor with the same size as input
that is filled with random numbers from a uniform distribution on the interval [0,1)[0, 1)[0,1) . torch.rand_like(input)
is equivalent to torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.
Parameters
-
input (Tensor) – the size of
input
will determine size of the output tensor. -
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
. -
layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
torch.
randint
(low=0, high, size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Returns a tensor filled with random integers generated uniformly between low
(inclusive) and high
(exclusive).
The shape of the tensor is defined by the variable argument size
.
Parameters
-
low (int, optional) – Lowest integer to be drawn from the distribution. Default: 0.
-
high (int) – One above the highest integer to be drawn from the distribution.
-
size (tuple) – a tuple defining the shape of the output tensor.
-
out (Tensor, optional) – the output tensor.
-
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). -
layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.randint(3, 5, (3,))
tensor([4, 3, 4])
>>> torch.randint(10, (2, 2))
tensor([[0, 2],
[5, 5]])
>>> torch.randint(3, 10, (2, 2))
tensor([[4, 5],
[6, 7]])
torch.
randint_like
(input, low=0, high, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Returns a tensor with the same shape as Tensor input
filled with random integers generated uniformly between low
(inclusive) and high
(exclusive).
Parameters
-
input (Tensor) – the size of
input
will determine size of the output tensor. -
low (int, optional) – Lowest integer to be drawn from the distribution. Default: 0.
-
high (int) – One above the highest integer to be drawn from the distribution.
-
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
. -
layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
torch.
randn
(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
Returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution).
outi∼N(0,1)\text{out}_{i} \sim \mathcal{N}(0, 1) outi∼N(0,1)
The shape of the tensor is defined by the variable argument size
.
Parameters
-
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
-
out (Tensor, optional) – the output tensor.
-
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). -
layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.randn(4)
tensor([-2.1436, 0.9966, 2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954, 2.8929, -1.0923],
[ 1.1719, -0.4709, -0.1996]])
torch.
randn_like
(input, dtype=None, layout=None, device=None, requires_grad=False) → Tensor
Returns a tensor with the same size as input
that is filled with random numbers from a normal distribution with mean 0 and variance 1. torch.randn_like(input)
is equivalent to torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.
Parameters
-
input (Tensor) – the size of
input
will determine size of the output tensor. -
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
. -
layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
torch.
randperm
(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False) → LongTensor
Returns a random permutation of integers from 0
to n - 1
.
Parameters
-
n (int) – the upper bound (exclusive)
-
out (Tensor, optional) – the output tensor.
-
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default:torch.int64
. -
layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. -
device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. -
requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.randperm(4)
tensor([2, 1, 0, 3])
In-place random sampling
There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation:
-
torch.Tensor.bernoulli_()
- in-place version oftorch.bernoulli()
-
torch.Tensor.cauchy_()
- numbers drawn from the Cauchy distribution -
torch.Tensor.exponential_()
- numbers drawn from the exponential distribution -
torch.Tensor.geometric_()
- elements drawn from the geometric distribution -
torch.Tensor.log_normal_()
- samples from the log-normal distribution -
torch.Tensor.normal_()
- in-place version oftorch.normal()
-
torch.Tensor.random_()
- numbers sampled from the discrete uniform distribution -
torch.Tensor.uniform_()
- numbers sampled from the continuous uniform distribution
Quasi-random sampling
class torch.quasirandom.
SobolEngine
(dimension, scramble=False, seed=None)[source]
The torch.quasirandom.SobolEngine
is an engine for generating (scrambled) Sobol sequences. Sobol sequences are an example of low discrepancy quasi-random sequences.
This implementation of an engine for Sobol sequences is capable of sampling sequences up to a maximum dimension of 1111. It uses direction numbers to generate these sequences, and these numbers have been adapted from here.
References
-
Art B. Owen. Scrambling Sobol and Niederreiter-Xing points. Journal of Complexity, 14(4):466-489, December 1998.
-
I. M. Sobol. The distribution of points in a cube and the accurate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
Parameters
-
dimension (Int) – The dimensionality of the sequence to be drawn
-
scramble (bool, optional) – Setting this to
True
will produce scrambled Sobol sequences. Scrambling is capable of producing better Sobol sequences. Default:False
. -
seed (Int, optional) – This is the seed for the scrambling. The seed of the random number generator is set to this, if specified. Otherwise, it uses a random seed. Default:
None
Examples:
>>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
>>> soboleng.draw(3)
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.7500, 0.2500, 0.7500, 0.2500, 0.7500],
[0.2500, 0.7500, 0.2500, 0.7500, 0.2500]])
draw
(n=1, out=None, dtype=torch.float32)[source]
Function to draw a sequence of n
points from a Sobol sequence. Note that the samples are dependent on the previous samples. The size of the result is (n,dimension)(n, dimension)(n,dimension) .
Parameters
-
n (Int, optional) – The length of sequence of points to draw. Default: 1
-
out (Tensor, optional) – The output tensor
-
dtype (
torch.dtype
, optional) – the desired data type of the returned tensor. Default:torch.float32
fast_forward
(n)[source]
Function to fast-forward the state of the SobolEngine
by n
steps. This is equivalent to drawing n
samples without using the samples.
Parameters
n (Int) – The number of steps to fast-forward by.
reset
()[source]
Function to reset the SobolEngine
to base state.