机器学习实现图像分类 SVM KNN 决策树 朴素贝叶斯

重要提示:本文仅仅靠调用python的sklearn中的模型包实现机器学习方法,不喜勿喷

代码主要参考并改进


完整项目、数据集及使用说明

实现效果

有两种数据集:

数据集1:彩色图片,从人物、美食到风景共十种类别

每种100张图片,共十类1000张

gcn对于图像分类 图像分类knn和svm_python


gcn对于图像分类 图像分类knn和svm_机器学习_02

数据集2:焊接缺项图像集

每种缺陷30张,共四类120张

gcn对于图像分类 图像分类knn和svm_机器学习_03


可以使用svm, knn, 朴素贝叶斯,决策树四种机器学习方法进行分类。将代码分成了四个文件,可以分别使用,不过也把相应的包注释在了svm这个文件中,并添加了混淆矩阵,通过更改注释即可更换。

(下文将附加代码,此处仅展示)

gcn对于图像分类 图像分类knn和svm_gcn对于图像分类_04

算法思想

Step1:对图像进行批量处理。
Step2:读取图片,并分别对图像进行灰度直方图特征提取和SIFT特征提取,并将特征提取处理后的图像拉伸为一维向量。
Step3:建立训练集,将其代入 SVM 算法中进行训练生成一个模型,最后将测试集代入模型中进行分类预测。
Step4:将分类结果与实际值进行对比,得到准确率、召回率等以及混淆矩阵,并对试验结果进行对比讨论。
Step5:将SVM分类结果与其他机器学习的实验结果进行对比比较,讨论模型分类的性能。

代码

# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import matplotlib as mpl

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['font.serif'] = ['KaiTi']
# mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串

# ----------------------------------------------------------------------------------
# 第一步 切分训练集和测试集
# ----------------------------------------------------------------------------------

X = []  # 定义图像名称
Y = []  # 定义图像分类类标
Z = []  # 定义图像像素
# 记得更改此处4或者10
for i in range(0, 10):
    # 遍历文件夹,读取图片
    for f in os.listdir("photo2/%s" % i):
        # 获取图像名称
        X.append("photo2//" + str(i) + "//" + str(f))
        # 获取图像类标即为文件夹名称
        Y.append(i)
# print(X)
# print(Y)
# os.walk 可以遍历多层路径,使用root, dirs, files
#
# for root, dirs, files in os.walk("photo"):
#         # Y.append(type_name)
#     for file in files:
#         X.append(os.path.join(root, file))
# print(X)
# print(Y)

X = np.array(X)
Y = np.array(Y)

# 随机率为100% 选取其中的20%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y,
                                                    test_size=0.2, random_state=1)

print(len(X_train), len(X_test), len(y_train), len(y_test))

# ----------------------------------------------------------------------------------
# 第二步 图像读取及转换为像素直方图
# ----------------------------------------------------------------------------------

# 训练集
XX_train = []
for i in X_train:
    # 读取图像
    # print i
    image = cv2.imdecode(np.fromfile(i, dtype=np.uint8), cv2.IMREAD_COLOR)

    # 图像像素大小一致
    img = cv2.resize(image, (256, 256),
                     interpolation=cv2.INTER_CUBIC)

    # 计算图像直方图并存储至X数组
    hist = cv2.calcHist([img], [0, 1], None,
                        [256, 256], [0.0, 255.0, 0.0, 255.0])

    XX_train.append(((hist / 255).flatten()))

# 测试集
XX_test = []
for i in X_test:
    # 读取图像
    # print i
    # 不使用imread,而是用imdecode以识别中文路径
    image = cv2.imdecode(np.fromfile(i, dtype=np.uint8), cv2.IMREAD_COLOR)

    # 图像像素大小一致
    img = cv2.resize(image, (256, 256),
                     interpolation=cv2.INTER_CUBIC)

    # 计算图像直方图并存储至X数组
    hist = cv2.calcHist([img], [0, 1], None,
                        [256, 256], [0.0, 255.0, 0.0, 255.0])

    XX_test.append(((hist / 255).flatten()))

# ----------------------------------------------------------------------------------
# 第三步 基于支持向量机的图像分类处理
# ----------------------------------------------------------------------------------
# 0.5
# 常见核函数‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’
clf = SVC().fit(XX_train, y_train)
clf = SVC(kernel="linear").fit(XX_train, y_train)
predictions_labels = clf.predict(XX_test)

# ----------------------------------------------------------------------------------
# 第三步 基于决策树的图像分类处理
# ----------------------------------------------------------------------------------
# 0.36
# from sklearn.tree import DecisionTreeClassifier
# clf = DecisionTreeClassifier().fit(XX_train, y_train)
# predictions_labels = clf.predict(XX_test)

# ----------------------------------------------------------------------------------
# 第三步 基于KNN的图像分类处理
# ----------------------------------------------------------------------------------
# 0.11
# from sklearn.neighbors import KNeighborsClassifier
# clf = KNeighborsClassifier(n_neighbors=11).fit(XX_train, y_train)
# predictions_labels = clf.predict(XX_test)

# ----------------------------------------------------------------------------------
# 第三步 基于朴素贝叶斯的图像分类处理
# ----------------------------------------------------------------------------------
# 0.01
# from sklearn.naive_bayes import BernoulliNB
# clf = BernoulliNB().fit(XX_train, y_train)
# predictions_labels = clf.predict(XX_test)

print(u'预测结果:')
print(predictions_labels)
print(u'算法评价:')
print(classification_report(y_test, predictions_labels))

# 输出前10张图片及预测结果
# k = 0
# while k < 10:
#     # 读取图像
#     print(X_test[k])
#     image = cv2.imread(X_test[k])
#     print(predictions_labels[k])
#     # 显示图像
#     # cv2.imshow("img", image)
#     cv2.waitKey(0)
#     cv2.destroyAllWindows()
#     k = k + 1

# -*-coding:utf-8-*-

# labels表示你不同类别的代号,比如这里的demo中有10个类别
labels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# labels = ['条形缺陷', '未焊透', '未熔合', '圆形缺陷']

'''
具体解释一下re_label.txt和pr_label.txt这两个文件,比如你有100个样本
去做预测,这100个样本中一共有10类,那么首先这100个样本的真实label你一定
是知道的,一共有10个类别,用[0,9]表示,则re_label.txt文件中应该有100
个数字,第n个数字代表的是第n个样本的真实label(100个样本自然就有100个
数字)。
同理,pr_label.txt里面也应该有1--个数字,第n个数字代表的是第n个样本经过
你训练好的网络预测出来的预测label。
这样,re_label.txt和pr_label.txt这两个文件分别代表了你样本的真实label和预测label,然后读到y_true和y_pred这两个变量中计算后面的混淆矩阵。当然,不一定非要使用这种txt格式的文件读入的方式,只要你最后将你的真实
label和预测label分别保存到y_true和y_pred这两个变量中即可。
'''
y_true = y_test  # 正确标签
y_pred = predictions_labels  # 预测标签
# 如果用10类照片就把下面注释掉
# y_true = []  # 正确标签
# y_pred = []  # 预测标签
# for i in range(len(y_test)):
#     if y_test[i] == 0:
#         y_true.append('条形缺陷')
#     elif y_test[i] == 1:
#         y_true.append('未焊透')
#     elif y_test[i] == 2:
#         y_true.append('未熔合')
#     elif y_test[i] == 3:
#         y_true.append('圆形缺陷')
#
# for i in range(len(predictions_labels)):
#     if predictions_labels[i] == 0:
#         y_pred.append('条形缺陷')
#     elif predictions_labels[i] == 1:
#         y_pred.append('未焊透')
#     elif predictions_labels[i] == 2:
#         y_pred.append('未熔合')
#     elif predictions_labels[i] == 3:
#         y_pred.append('圆形缺陷')

tick_marks = np.array(range(len(labels))) + 0.5


def plot_confusion_matrix(cm, title='Confusion Matrix', cmap=plt.cm.binary):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    xlocations = np.array(range(len(labels)))
    plt.xticks(xlocations, labels, rotation=90)
    plt.yticks(xlocations, labels)
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


cm = confusion_matrix(y_true, y_pred)
np.set_printoptions(precision=2)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print(cm_normalized)
plt.figure(figsize=(12, 8), dpi=120)

ind_array = np.arange(len(labels))
x, y = np.meshgrid(ind_array, ind_array)

for x_val, y_val in zip(x.flatten(), y.flatten()):
    c = cm_normalized[y_val][x_val]
    if c > 0.01:
        plt.text(x_val, y_val, "%0.2f" % (c,), color='red', fontsize=7, va='center', ha='center')
# offset the tick
plt.gca().set_xticks(tick_marks, minor=True)
plt.gca().set_yticks(tick_marks, minor=True)
plt.gca().xaxis.set_ticks_position('none')
plt.gca().yaxis.set_ticks_position('none')
plt.grid(True, which='minor', linestyle='-')
plt.gcf().subplots_adjust(bottom=0.15)

plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')
# show confusion matrix
plt.savefig('matrix.png', format='png')
plt.show()

结果展示

记得更改代码中的文件路径、读取文件个数和混淆矩阵label

仅展示svm的分类效果,因为svm的结果比较好

① 彩色自然图像

混淆矩阵

gcn对于图像分类 图像分类knn和svm_python_05


准确率

gcn对于图像分类 图像分类knn和svm_python_06


② 缺陷图像

混淆矩阵

gcn对于图像分类 图像分类knn和svm_机器学习_07

准确率

gcn对于图像分类 图像分类knn和svm_图像分类_08