工作流如下图所示,要求每一个任务只执行一次,不重复执行,要求任务的所有前置任务必须完成才能往后执行,例如任务7必须在任务13,2,3三个任务完成之后才能执行,而任务13,2,3属于独立的任务,可以并发执行 根据多线程求得出6个路线数据每个线程可以独立执行,所有线程相同的任务不能重复执行,当前任务必须在前置任务完成之后才能执行,路线:[1, 2, 7, 10, 12] 路线:[1, 13,
转载
2023-08-16 22:00:17
169阅读
有向无环图及其应用一.有向无环图的概念二.拓扑排序(AOV网)1.概念2.偏序与全序a).偏序b).全序c).偏序与全序的区别3.拓扑有序4.拓扑排序的过程三.关键路径(AOE网)1.概念2.实现a).最早发生时间Ve(j)b).最晚发生时间Vl(j)c).e(i)d).l(i)四.代码1.AOV2.AOE 一.有向无环图的概念一个无环的有向图称作有向无环图。简称DAG图。DAG图是相较于有向树
转载
2023-10-09 15:31:38
107阅读
拓扑序列:可以用来判断一个有向图是否有环! 拓扑排序可以判断有向图是否存在环。我们可以对任意有向图执行上述过程,在完成后检查A序列的长度。 若A序列的长度小于图中点的数量,则说明某些节点未被遍历,进而说明图中存在环。拓扑排序是结合bfs框架来实现的,每次从入度为0的点开始搜索;所以需要先预处理出来所有入度为0的节点,入队,然后去遍历这些入度为0的点,每次将这些点进行逻辑上的删除,然后更新它的直接邻
一、有向无环图一个无环的有向图称做有向无环图(Directed Acyclic Graph)。简称DAG 图。在图论中,如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。因为有向图中一个点经过两种路线到达另一个点未必形成环,因此有向无环图未必能转化成树,但任何有向树均为有向无环图。使用有向无环图解题时,要先判断是否是有向无环题。如果任务x必须在任务y之前完
转载
2023-08-13 19:11:59
287阅读
遍历有向无环图,寻找最优路径:1、假设我们从A点走到B点,可以经过不同的地方,分别用1,2,3,4,5,6表示,A用0表示,B用7表示,从一个地方到另一个地方,中间的路好走的程度用w表示,w越大表示越好走,因此我们可以建立数学模型如下图1所示:图12、根据数学模型,我们判断这是一个有向无环图遍历问题,有向无环图遍历有两种方法,(1)、广度优先(BFS)、(2)、深度优先(DFS)而我们需要的结果是
转载
2023-09-13 13:20:05
250阅读
文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴拓扑排序 一、题目1、原题链接3696. 构造有向无环图2、题目描述给定一个由 n 个点和 m 条边构成的图。不保证给定的图是连通的。图中的一部分边的方向已经确定,你不能改变它们的方向。剩下的边还未确定方向,你需要为每一条还未确定方向的边指定方向。你需要保证在确定所有边的方向后,生成的图是一个有
目录1 拓扑序列——AOV 网1.1 手工运算拓扑序列1.2 手工运算逆拓扑序列1.3 代码实现拓扑序列1.4 代码实现逆拓扑序列(DFS 算法)2 关键路径——AOE 网2.1 所有事件的最早发生时间 ve(vk)2.2 所有事件的最迟发生时间 vl(vk)2.3 所有活动的最早发生时间 e(ai)2.4 所有活动的最迟发生时间 l(ai)2.5 所有活动的时间余量 d(ai)3 有向无环图(D
转载
2023-07-19 10:12:52
159阅读
目录一、什么是AOE网?1.1 AOE网的定义和性质1.2 AOE网的应用二、什么是关键路径?2.1 关键路径和关键活动的定义2.2 寻找关键活动2.2.1 事件的最早发生时间ve[i]2.2.2 事件的最晚发生时间vl[i]2.2.3 活动的最早开始时间ee[i] 2.2.4 活动的最晚开始时间el[i] 三、关键路
转载
2023-11-06 17:01:01
80阅读
一、介绍1.有向无环图(DAG)2.拓扑排序1.偏序2.全序3.拓扑有序4.拓扑排序3.AOV(Activity On Vertex 顶点表示活动的网)概念举例应用4.AOE(Activity On Edge 边表示活动的网)概念举例性质5.关键路径概念举例二、实现拓扑排序算法思想 算法实现1.DAG的创建2.拓扑排序3.全部代码代码执行结果三、实现求关键路径算法思想算法实现有向图类:得
转载
2023-10-11 15:07:14
170阅读
1.原理说明有向无环图:如果一个有向图无法从任意顶点出发经过若干条边回到该点,则这个图是一个有向无环图(DAG图)在Spark中对任务进行排队,形成一个集合就是DAG图,每一个顶点就是一个任务,每一条边代表一个依赖关系通过DAG可以对计算流程进行优化,比如将单一节点的计算操作合并,对涉及shuffle操作的步骤划分stage等DAG生成的重点是对Stage的划分,划分依据是RDD的依赖关系,对宽依
转载
2023-06-11 14:53:29
228阅读
1.Kahn 算法Kahn 算法实际上用的是贪心算法思想,思路非常简单、好懂。定义数据结构的时候,如果 s 需要先于 t 执行,那就添加一条 s 指向 t 的边。所以,如果某个顶点入度为 0, 也就表示,没有任何顶点必须先于这个顶点执行,那么这个顶点就可以执行了。 我们先从图中,找出一个入度为
文章目录一、有向无环图1.判断2.应用①表达式共享②AOV网二、拓补排序1.拓补排序算法2.数据结构的实现三、关键路径1.参数介绍2.具体算法 一、有向无环图 即DAG(Directed Acycline Graph),为图中无环的有向图。 1.判断①深度优先搜索: 可以使用DFS,找出是否存在环:从某个顶点出发,进行DFS,若存在一条从顶点到已访问顶点的回边(即遍历到同一个点两次),则有
转载
2023-10-02 12:55:20
520阅读
4-9 无向图的环检测如果在遍历的过程中,发现某个顶点有一条边指向已经访问过的顶点,且这个已访问过的顶点不是当前顶点的父节点(这里的父节点表示DFS遍历顺序中的父节点),则说明图包含环。如图中:从0开始DFS(深度优先遍历),0->6->4->5,此时顶点5的一条边指向顶点0,顶点0已经访问过,但却不是顶点5的父节点(顶点4),说明出现了环。package
目录前言一、拓扑排序二、关键路径总结前言一个无环的有向图称为有向无环图,简称DAG图。 有向无环图也是描述一项工程或系统的进行过程的有效工具。 解决的实际问题: 1.一是工程能否顺利进行;------------------------ 拓扑排序 2.二是估算整个工程完成所必须的最短时间。 ---------关键路径一、拓扑排序1.什么是拓扑排序?由某个集合上的一个偏序得到该集合上的一个全序的操作
文章目录DFS的概念蓝桥杯:大臣的旅费问题描述输入格式输出格式解题理解解题源码参考目录 DFS的概念深度优先搜索(depth-first seach,DFS)在搜索到一个新的节点时,立即对该新节点进行遍历;因此遍历需要用先入后出的栈来实现,也可以通过与栈等价的递归来实现。深度优先搜索也可以用来检测环路:记录每个遍历过的节点的父节点,若一个节点被再次遍历且父节点不同,则说明有环。我们也可以用之后会
当每个任务有前后置关系时,需要找到一种满足前后置关系的路线,将任务完成。
如果将每个任务看成一个节点,任务之间的前后置关系表示为有向图时,这种路线顺序叫做为图进行拓扑排序。也叫关键路径分析。
比如有很多任务T1,T2,....
这些任务又是相互关联的,比如Tj完成前必须要求Ti已完成,这样T1,T2....序列关于这样的先决条件构成一个图,其中如果
定义 边有向,无环。 英文名叫 Directed Acyclic Graph,缩写是 DAG。 性质 能 拓扑排序 的图,一定是有向无环图; 如果有环,那么环上的任意两个节点在任意序列中都不满足条件了。 有向无环图,一定能拓扑排序; (归纳法)假设节点数不超过 \(k\) 的 有向无环图都能拓扑排序
转载
2020-07-25 19:34:00
1094阅读
2评论
一. 实验要求 实现利用邻接矩阵构造无向图的算法,在此基础上进行深度优先遍历和广度优先遍历。 二. 实验目的 通过该实验,使学生掌握图的几种存储结构,理解图的深度优先和广度优先遍历算法的思想和实现办法 三、设计思想 1.创建网图。网图是利用邻接矩阵来存储的。先从键盘输入图的顶点树vex和边数arc。创建一个正方形矩阵,边数等于vex。然后输入这vex个顶点的符号。再输入图中i个顶点和j个顶点相连,
c/c++ 有向无环图 directed acycline graph概念:图中点与点之间的线是有方向的,图中不存在环。用邻接表的方式,实现的图。名词:顶点的入度:到这个顶点的线的数量。顶点的出度:从这个顶点出发的线的数量。实现思路:1,计算出每个顶点的入度,存放到辅助数组cnt中2,找到入度为0的顶点集合。3,从入度为0的顶点集合,拿出一个顶点,这个顶点就是第一个顶点(不唯一)。4,找到与以3处
补充:也适用于有向图的回路判断,因为下面算法是基于邻接矩阵的。总体思路:(1)通过广度遍历(BFS)访问图的所有点,对于每个点,都检测和已访问过的点是否有边(除了和它连接的上层节点)。(1.1)如果有边,说明有回路(有环)。如果对于每个点,都没有和已访问过的点有边,说明从该点出发的当前图没有回路(无环)。(2)如果从任意点开始的BFS,以上操作(1)均说明无回路,则没有回路。适用范围:(1)判断图