目录1 多输入通道--单输出通道2 多输出通道3
1
×
1
转载
2024-05-07 19:15:14
165阅读
深度神经网络框架:(前向神经网络FDNN&&全连接神经网络FCNN)使用误差反向传播来进行参数训练(训练准则、训练算法)数据预处理 最常用的两种数据预处理技术是样本特征归一化和全局特征标准化。 a.样本特征归一化 如果每个样本均值的变化与处理的问题无关,就应该将特征均值归零,减小特征相对于DNN模型的变化。在语音识别中,倒谱均值归一化(CMN)是在句子内减去MFCC特征的均值,可以
转载
2024-04-20 22:17:41
55阅读
在深度学习出现之前,必须借助SIFT、HoG等算法提取具有良好区分性的特征,再集合SVM等机器学习算法进行图像识别。 而卷积神经网络(CNN)提取的特征可以达到更好的效果,同时它不需要将特征提取和分类训练两个过程分开,在训练时就自动提取最有效的特征。CNN可以直接使用图像的原始像素作为输入,而不必使用SIFT等算法提取特征,减轻了传统算法必须要做的大量重复、繁琐的数据预处理工作。 CNN最大的
转载
2024-01-06 08:33:55
456阅读
CNN一般是由输入层、卷积层、激活函数、池化层、全连接层卷积层:用来进行特征的提取: 其中input image 32x32x3 其中3为他的通道数或者可以理解成深度(R、G、B),卷积层是一个5x5x3的filter w。filter (滤波或者成为感受野),其中filter同输入的image的通道数是相同的。如上图,image(32x32x3)与filter W 做卷积生成得到28x28x1的
转载
2024-03-19 13:47:20
495阅读
Facenet的实现思路一、预测部分1、主干网络介绍 facenet的主干网络起到提取特征的作用,原版的facenet以Inception-ResNetV1为主干特征提取网络。本文一共提供了两个网络作为主干特征提取网络,分别是mobilenetv1和Inception-ResNetV1,二者都起到特征提取的作用,为了方便理解,本博文中会使用mobilenetv1作
转载
2024-04-26 16:54:44
114阅读
概述上一篇文章我们一起学习了GCN网络,它的作用是提取特征点和描述子,用于匹配得到位姿。本次我们一起学习它的改进版GCNv2,改进版在速度上大幅度提升,精度上和原网络性能相当。并且改进版所提取的特征点具有和ORB一样的格式,因此作者把它在ORB-SLAM中替换掉了ORB特征,也就是GCN-SLAM。论文链接:https://arxiv.org/abs/1902.11046v1代码链接
转载
2024-02-28 20:50:12
284阅读
看了论文和博客,对于CNN还是有些模糊,索性直接看代码,下面总结一下Toolbox中CNN的过程:
网络结构是采用1-6c-2s-12c-2s的结构,对于初始层,相当于只有一层特征层作为输入,然后是CNN中所特有的c层和s层,这里说一下c层和s层,c层就是convolutional层,将输入层通过不同的卷积核map到几个特征层上,这里面就涉及到卷积操作
一. 背景在蚂蚁集团智能监控领域,时序异常检测是极重要一环,异常检测落地中,业务方参考业界标准输出 Metrics 指标数据,监控不同业务、应用、接口、集群的各项指标,包含 Metrics 指标(总量、失败量、耗时等)和系统服务指标(CPU、MEM、DISK、JVM、IO 等)。早期的时序异常检测是由 SRE 结合长期运维经验通过配置专家规则来完成,随着 AI 技术的普及,异常检测逐步 AI 化,
介绍FPN是一种利用常规CNN模型来高效提取图片中各维度特征的方法。在计算机视觉学科中,多维度的目标检测一直以来都是通过将缩小或扩大后的不同维度图片作为输入来生成出反映不同维度信息的特征组合。这种办法确实也能有效地表达出图片之上的各种维度特征,但却对硬件计算能力及内存大小有较高要求,因此只能在有限的领域内部使用。FPN通过利用常规CNN模型内部从底至上各个层对同一scale图片不同维度的特征表达
转载
2023-11-24 22:31:12
339阅读
一、背景对于深度学习相关的轴承故障分析,以前的研究要么使用原始的一维时间序列直接作为网络模型的输入,要么使用通过一维信号转换获得的二维波形信号作为网络模型的输入。基于原始数据的深度学习需要消耗大量的计算资源,此外大量的无用数据会大大降低模型的训练精度,因此本文希望将数据驱动的故障诊断转化为特征驱动的故障诊断,基于关键信息进行诊断大大加快了计算效率。现有的卷积以一维和二维为主,一维时间序列信号进行分
转载
2024-03-20 13:07:56
645阅读
R-CNN:selective search+CNN+L-SVM的检测器算法总体思路 首先输入一张图片,我们先定位出2000个物体候选框,然后采用CNN提取每个候选框中图片的特征向量,特征向量的维度为4096维,接着采用svm算法对各个候选框中的物体进行分类识别。也就是总个过程分为三个程序:a、找出候选框;b、利用CNN提取特征向量;c、利用SVM进行特征向量分类CNN特征提取阶段1、算
语音识别对特征参数有如下要求:1. 能将语音信号转换为计算机能够处理的语音特征向量2. 能够符合或类似人耳的听觉感知特性3. 在一定程度上能够增强语音信号、抑制非语音信号常用特征提取方法有如下几种:(1)线性预测分析(LinearPredictionCoefficients,LPC) 拟人类的发声原理,通过分析声道短管级联的模型得到的。假设系
转载
2024-07-31 13:14:22
190阅读
机器学习好伙伴之scikit-learn的使用——特征提取什么是特征提取sklearn中特征提取的实现PCA(主成分分析)LDA(线性评价分析)应用示例PCA部分LDA部分 有些时候特征太多了,可以利用sklearn中自带的函数进行特征提取噢什么是特征提取在进行机器学习的实验里,但并不是所有的维度都是有用的,如果能将对实验结果影响较大的有用维度提取出来,去除掉无用维度,那么既可以提高预测的精度、
LBP(Local Binary Patterns)是一直直接,且行之有效的图像特征提取算子。其基本思想是:对于图中某个像素(i,j),取其一定的邻域,例如3*3。对于邻域内的每个像素(p,q),如果这个像素(p,q)值大于等于中心像素(i,j)值,则将这个(p,q)像素记为1,否则记为0。然后将邻域内所有的1和0,按照一定的顺序,组成2进制串,就构成了中间像素的局部2值特征,或者将此2进制串转换
转载
2024-09-06 10:55:55
44阅读
神经网络大多解决图像识别问题:输入一张图像,输出该对象对应的类别。目标检测输入的同样是一张图片,区别在于输出不单单是图像的类别,还有该图像中包含的所有物体以及其位置,本博文先从R-CNN讲起。 说起R-CNN(Region - Cnn),它是第一个成功的将深度学习应用到目标检测的算法。传统的目标检测算法先是在图片中以穷举算法选出所有物体可能出现的区域框,然后在区域框中提取特征并且使用
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了。将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中。深度学
转载
2024-08-12 11:48:56
395阅读
目录1. 转置卷积的直观理解1.1 卷积和转置卷积2. 转置卷积的计算过程2.1 思路一:将转置卷积看成几个矩阵相加2.2 思路二:转置卷积是一种卷积3. 如何计算转置卷积输出feature map的size 1. 转置卷积的直观理解1.1 卷积和转置卷积卷积的直观理解:卷积用来抽取输入的特征,底层的卷积抽取的是纹理、颜色等底层特征,上层的卷积抽取的是语义特征。卷积的输出一般称为feature
转载
2024-10-16 12:13:28
62阅读
(一)HOG特征
1、HOG特征:
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测
毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清
转载
2023-08-04 11:14:47
207阅读
1.概念CNN -> 深度学习模型,主要用于图像识别、语音识别、自然语言处理等。2.卷积操作1.滑动卷积核(一个小矩阵、滤波器)对输入图像进行特征提取
2.滑动在图像上,对每个位置的像素进行加权求和 -> 新的输出矩阵(特征图)\[y[i] = (w * x)[i] = sum(j=0 to k-1) w[j] * x[i+j]
\]3.通过不同的卷积可以提取不同的特征,比如边缘、角点
转载
2024-03-25 12:16:48
396阅读