目录1. 转置卷积的直观理解1.1 卷积和转置卷积2. 转置卷积的计算过程2.1 思路一:将转置卷积看成几个矩阵相加2.2 思路二:转置卷积是一种卷积3. 如何计算转置卷积输出feature map的size 1. 转置卷积的直观理解1.1 卷积和转置卷积卷积的直观理解:卷积用来抽取输入的特征,底层的卷积抽取的是纹理、颜色等底层特征,上层的卷积抽取的是语义特征。卷积的输出一般称为feature
众所周知通常CNN要求输入图像尺寸是固定的,比如现有的效果比较好的pre-trained的模型要求输入为224224,227227等。这个要求是CNN本身结构决定的,因为CNN一般包括多个全连接层,而全连接层神经元数目通常是固定的,如4096,4096,1000。这一限制决定了利用CNN提取特征是单一尺度的,因为输入图像是单一的。 多尺度特征(multi-scale feature)能有效改善i
毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清
正文在科研论文,方案讲解,模型分析中,合理解释特征图是对最终结果的一个加分项。但是之前的一些可视化特征图的方法往往会有一些tedious,于是我在这里给大家推荐一个非常方便实现这个目标的库 -- Evison。Github链接: GitHub - JonnesLin/Evison: We provide an easy way for visualizingGitHub仓库中有完整的代码
概述上一篇文章我们一起学习了GCN网络,它的作用是提取特征点和描述子,用于匹配得到位姿。本次我们一起学习它的改进版GCNv2,改进版在速度上大幅度提升,精度上和原网络性能相当。并且改进版所提取特征点具有和ORB一样的格式,因此作者把它在ORB-SLAM中替换掉了ORB特征,也就是GCN-SLAM。论文链接:https://arxiv.org/abs/1902.11046v1代码链接
看了论文和博客,对于CNN还是有些模糊,索性直接看代码,下面总结一下Toolbox中CNN的过程: 网络结构是采用1-6c-2s-12c-2s的结构,对于初始层,相当于只有一层特征层作为输入,然后是CNN中所特有的c层和s层,这里说一下c层和s层,c层就是convolutional层,将输入层通过不同的卷积核map到几个特征层上,这里面就涉及到卷积操作
      为何不使用C++版本FCN获取最后的分割掩模像素块集合,何必要使用python呢!因此需要获取网络最后层的所有featureMaps,featureMaps的结果直接对应了segmentation的最终结果,可以直接用于掩模分析。      caffe源码给出了提取中间层featureM
转载 2024-06-18 17:39:45
102阅读
介绍FPN是一种利用常规CNN模型来高效提取图片中各维度特征的方法。在计算机视觉学科中,多维度的目标检测一直以来都是通过将缩小或扩大后的不同维度图片作为输入来生成出反映不同维度信息的特征组合。这种办法确实也能有效地表达出图片之上的各种维度特征,但却对硬件计算能力及内存大小有较高要求,因此只能在有限的领域内部使用。FPN通过利用常规CNN模型内部从底至上各个层对同一scale图片不同维度的特征表达
作者:晓凡概要:近日,来自谷歌大脑和谷歌研究院的一篇技术文章又从一个新的角度拓展了人类对神经网络的理解,得到的可视化结果也非常亮眼、非常魔性。深度神经网络解释性不好的问题一直是所有研究人员和商业应用方案上方悬着的一团乌云,现代CNN网络固然有强大的特征抽取能力,但没有完善的理论可以描述这个抽取过程的本质,人类也很难理解网络学到的表征。当然了,研究人员们从来都不会放弃尝试。IMCL 2017的最佳论
语音识别对特征参数有如下要求:1. 能将语音信号转换为计算机能够处理的语音特征向量2. 能够符合或类似人耳的听觉感知特性3. 在一定程度上能够增强语音信号、抑制非语音信号常用特征提取方法有如下几种:(1)线性预测分析(LinearPredictionCoefficients,LPC)    拟人类的发声原理,通过分析声道短管级联的模型得到的。假设系
转载 2024-07-31 13:14:22
186阅读
 神经网络大多解决图像识别问题:输入一张图像,输出该对象对应的类别。目标检测输入的同样是一张图片,区别在于输出不单单是图像的类别,还有该图像中包含的所有物体以及其位置,本博文先从R-CNN讲起。  说起R-CNN(Region - Cnn),它是第一个成功的将深度学习应用到目标检测的算法。传统的目标检测算法先是在图片中以穷举算法选出所有物体可能出现的区域框,然后在区域框中提取特征并且使用
机器学习好伙伴之scikit-learn的使用——特征提取什么是特征提取sklearn中特征提取的实现PCA(主成分分析)LDA(线性评价分析)应用示例PCA部分LDA部分 有些时候特征太多了,可以利用sklearn中自带的函数进行特征提取噢什么是特征提取在进行机器学习的实验里,但并不是所有的维度都是有用的,如果能将对实验结果影响较大的有用维度提取出来,去除掉无用维度,那么既可以提高预测的精度、
LBP(Local Binary Patterns)是一直直接,且行之有效的图像特征提取算子。其基本思想是:对于图中某个像素(i,j),取其一定的邻域,例如3*3。对于邻域内的每个像素(p,q),如果这个像素(p,q)值大于等于中心像素(i,j)值,则将这个(p,q)像素记为1,否则记为0。然后将邻域内所有的1和0,按照一定的顺序,组成2进制串,就构成了中间像素的局部2值特征,或者将此2进制串转换
转载 2024-09-06 10:55:55
42阅读
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了。将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中。深度学
(一)HOG特征 1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测
转载 7月前
19阅读
计算机视觉是一门研究如何使机器“看”的科学,让计算机学会处理和理解图像。这门学问有时需要借助机器学习。本文介绍一些机器学习在计算机视觉领域应用的基础技术。通过像素值提取特征数字图像通常是一张光栅图或像素图,将颜色映射到网格坐标里。一张图片可以看成是一个每个元素都是颜色值的矩阵。表示图像基本特征就是将矩阵每行连起来变成一个行向量。光学文字识别(Optical character recognit..
转载 2021-06-17 18:06:30
1983阅读
计算机视觉是一门研究如何使机器“看”的科学,让计算机学会处理和理解图像。这门学问有时需要借助机器学习。本文介绍一些机器学习在计算机视觉领域应用的基础技术。通过像素值提取特征数字图像通常是一张光栅图或像素图,将颜色映射到网格坐标里。一张图片可以看成是一个每个元素都是颜色值的矩阵。表示图像基本特征就是将矩阵每行连起来变成一个行向量。光学文字识别(Optical character recognit...
原创 2022-03-01 17:33:15
1321阅读
1.1图像特征的分类 特征是用来区分图像的最基本的属性,图像特征可以从下面几个方面进行分类。 1、获取方式:人工特征和自然特征。 1.1.1点、线、面特征1、点特征是最常用和重要的特征,大部分局部特征都是在点特征的基础上提出的。点特征包括物体边缘点、角点、线交叉点等,其中角点是最具代表性的。角点常用的提取方法如下:1)基于曲率提取法2)基于灰度提取法3)基于边缘
1.概念CNN -> 深度学习模型,主要用于图像识别、语音识别、自然语言处理等。2.卷积操作1.滑动卷积核(一个小矩阵、滤波器)对输入图像进行特征提取 2.滑动在图像上,对每个位置的像素进行加权求和 -> 新的输出矩阵(特征图)\[y[i] = (w * x)[i] = sum(j=0 to k-1) w[j] * x[i+j] \]3.通过不同的卷积可以提取不同的特征,比如边缘、角点
转载 2024-03-25 12:16:48
396阅读
三大特征提取器 - RNN、CNN和Transformer# 简介 近年来,深度学习在各个NLP任务中都取得了SOTA结果。这一节,我们先了解一下现阶段在自然语言处理领域最常用的特征抽取结构。本文部分参考张俊林老师的文章《放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较》(写的非常好,学NLP必看博文),这里一方面对博文进行一定程度上的总结,并加上一
  • 1
  • 2
  • 3
  • 4
  • 5