LBP(Local Binary Patterns)是一直直接,且行之有效的图像特征提取算子。其基本思想是:对于图中某个像素(i,j),取其一定的邻域,例如3*3。对于邻域内的每个像素(p,q),如果这个像素(p,q)值大于等于中心像素(i,j)值,则将这个(p,q)像素记为1,否则记为0。然后将邻域内所有的1和0,按照一定的顺序,组成2进制串,就构成了中间像素的局部2值特征,或者将此2进制串转换
转载 2024-09-06 10:55:55
44阅读
毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清
http://www.liuxiao.org/2019/02/%E8%AE%BA%E6%96%87%E7%AC%94%E8%AE%B0%EF%BC%9Anetvlad-cnn-architecture-for-weakly-supervised-place-recognition/   https://zhuanlan.zhihu.com/p/237602816传统方
三大特征提取器 - RNN、CNN和Transformer# 简介 近年来,深度学习在各个NLP任务中都取得了SOTA结果。这一节,我们先了解一下现阶段在自然语言处理领域最常用的特征抽取结构。本文部分参考张俊林老师的文章《放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较》(写的非常好,学NLP必看博文),这里一方面对博文进行一定程度上的总结,并加上一
概述上一篇文章我们一起学习了GCN网络,它的作用是提取特征点和描述子,用于匹配得到位姿。本次我们一起学习它的改进版GCNv2,改进版在速度上大幅度提升,精度上和原网络性能相当。并且改进版所提取特征点具有和ORB一样的格式,因此作者把它在ORB-SLAM中替换掉了ORB特征,也就是GCN-SLAM。论文链接:https://arxiv.org/abs/1902.11046v1代码链接
看了论文和博客,对于CNN还是有些模糊,索性直接看代码,下面总结一下Toolbox中CNN的过程: 网络结构是采用1-6c-2s-12c-2s的结构,对于初始层,相当于只有一层特征层作为输入,然后是CNN中所特有的c层和s层,这里说一下c层和s层,c层就是convolutional层,将输入层通过不同的卷积核map到几个特征层上,这里面就涉及到卷积操作
Python人脸图像特征提取方法一、HOG人脸图像特征提取1、HOG特征:1) 主要思想:2) 实现方法:3) 性能提高:4) 优点2、HOG特征提取算法的实现过程:二、Dlib人脸图像特征提取1.Dlib介绍2.主要特点三、卷积神经网络人脸图像特征提取1、卷积神经网络简介2、卷积神经网络结构1) 输入层2) 隐含层卷积层池化层输出层一、HOG人脸图像特征提取 1、HOG特征: 方向梯度直方图(H
介绍FPN是一种利用常规CNN模型来高效提取图片中各维度特征的方法。在计算机视觉学科中,多维度的目标检测一直以来都是通过将缩小或扩大后的不同维度图片作为输入来生成出反映不同维度信息的特征组合。这种办法确实也能有效地表达出图片之上的各种维度特征,但却对硬件计算能力及内存大小有较高要求,因此只能在有限的领域内部使用。FPN通过利用常规CNN模型内部从底至上各个层对同一scale图片不同维度的特征表达
背景与意义 在Web2.0时代,尤其是随着Flickr、Facebook等社交网站的流行,图像、视频、音频、文本等异构数据每天都在以惊人的速度增长。例如, Facebook注册用户超过10亿,每月上传超过10亿的图片;Flickr图片社交网站2015年用户上传图片数目达7.28亿,平均每天用户上传约200万的图片;中国最大的电子商务系统淘宝网的后端系统上保存着286亿多张图片。针对这些包含丰富视
常见的几种图像特征提取算法1. LBP算法(Local Binary Patterns,局部二值模式)2.HOG特征提取算法(Histogram of Oriented Gradient)3.SIFT算子(Scale-invariant feature transform,尺度不变特征变换) 1. LBP算法(Local Binary Patterns,局部二值模式)LBP算子是一种用来描述图像
语音识别对特征参数有如下要求:1. 能将语音信号转换为计算机能够处理的语音特征向量2. 能够符合或类似人耳的听觉感知特性3. 在一定程度上能够增强语音信号、抑制非语音信号常用特征提取方法有如下几种:(1)线性预测分析(LinearPredictionCoefficients,LPC)    拟人类的发声原理,通过分析声道短管级联的模型得到的。假设系
转载 2024-07-31 13:14:22
190阅读
特征选择和特征提取属于图像处理领域最基本的操作。再这之前,我们先来了解一下卷积和滤波,像平时我们听到的CNN,就是使用卷积操进行图像的滤波操作,简单来说,滤波是图像处理的操作,而卷积是实现滤波的方法。一个是图像处理概念,一个是数学概念。而特征,其实就是我们要从图像提取的可以描述图像的性质,简单理解,像边缘、角、轮廓等都属于图像特征,而图像处理就是通过机器学习的方式得到图像中的这些特征,从而用这
自动化特征提取器:图像特征提取和深度学习视觉和声音是人类固有的感觉输入。我们的大脑是可以迅速进化我们的能力来处理视觉和听觉信号的,一些系统甚至在出生前就对刺激做出反应。另一方面,语言技能是学习得来的。他们需要几个月或几年的时间来掌握。许多人天生就具有视力和听力的天赋,但是我们所有人都必须有意训练我们的大脑去理解和使用语言。有趣的是,机器学习的情况是相反的。我们已经在文本分析应用方面取得了比图像或音
 神经网络大多解决图像识别问题:输入一张图像,输出该对象对应的类别。目标检测输入的同样是一张图片,区别在于输出不单单是图像的类别,还有该图像中包含的所有物体以及其位置,本博文先从R-CNN讲起。  说起R-CNN(Region - Cnn),它是第一个成功的将深度学习应用到目标检测的算法。传统的目标检测算法先是在图片中以穷举算法选出所有物体可能出现的区域框,然后在区域框中提取特征并且使用
机器学习好伙伴之scikit-learn的使用——特征提取什么是特征提取sklearn中特征提取的实现PCA(主成分分析)LDA(线性评价分析)应用示例PCA部分LDA部分 有些时候特征太多了,可以利用sklearn中自带的函数进行特征提取噢什么是特征提取在进行机器学习的实验里,但并不是所有的维度都是有用的,如果能将对实验结果影响较大的有用维度提取出来,去除掉无用维度,那么既可以提高预测的精度、
文章目录前言一、为什么要进行批处理二、具体步骤1.选择输入图像所在路径2.选择输出图像保存路径3.批量读取图像、处理,输出(以提取边缘特征为例)4.完整代码三、实验演示总结参考博客 前言最近在复现论文,其中有一个环节是对图像进行特征提取,因为图像太多所以需要进行批处理。一、为什么要进行批处理在大部分图像处理任务中,第一步是对所需算法进行研究,在这一过程往往只针对一张或者少量图像进行处理,研究算法
文章目录特征是什么?图像特征的操作步骤常见的特征提取方法:其他常用的特征检测算法 特征是什么?常见的特征有:边缘、角,区域; 图像特征的操作步骤目前图像特征提取主要有两种方法:传统图像特征提取方法 和 深度学习方法。传统的特征提取方法:基于图像本身的特征进行提取;深度学习方法:基于样本自动训练出区分图像特征分类器;传统的图像特征提取一般分为三个步骤:预处理、特征提取特征处理;然后在利用机器
(一)HOG特征 1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测
转载 8月前
19阅读
目录1. 转置卷积的直观理解1.1 卷积和转置卷积2. 转置卷积的计算过程2.1 思路一:将转置卷积看成几个矩阵相加2.2 思路二:转置卷积是一种卷积3. 如何计算转置卷积输出feature map的size 1. 转置卷积的直观理解1.1 卷积和转置卷积卷积的直观理解:卷积用来抽取输入的特征,底层的卷积抽取的是纹理、颜色等底层特征,上层的卷积抽取的是语义特征。卷积的输出一般称为feature
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了。将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像特征,就隐藏在这些数字规律中。深度学
  • 1
  • 2
  • 3
  • 4
  • 5