动机在计算机视觉领域,经常需要检测极值位置,比如SIFT关键点检测、模板匹配获得最大响应位置、统计直方图峰值位置、边缘检测等等,有时只需要像素精度就可以,有时则需要亚像素精度。本文尝试总结几种常用的一维离散数据极值检测方法,几个算法主要来自论文《A Comparison of Algorithms for Subpixel Peak Detection》,加上自己的理解和推导。问题定义给定如下离
利用Deriche、Lanser、Shen和Canny滤波器提取亚像素精度边缘;亚像素:面阵相机的成像面的最小单位是像素,例如某芯片的像素间距为5.2微米,在相机机拍摄时,将物理世界中连续的图像进行了离散化处理;到成像面上每一个像素点只代表其附近的颜色,至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的,但是在微观上,它们之间还有无限的更小的东西存在
转载
2024-03-31 21:52:45
474阅读
边缘提取(亚像素精度)除了应用边缘滤波器去得到边缘振幅,进而得到边缘的传统方法,HALCON提供了可返回亚像素精度的XLD轮廓的一步算子。除此之外,不仅边缘还有线段也可北提取,这种方法也可被应用到彩色图像。这种方法的优势是其易用性,因为仅仅一个单独的算子调用被需要。还有,被找到轮廓的准确性和稳定性是及其高的。最后,HALCON提供一组针对提取轮廓后期处理的算子,其包含了诸如轮廓分割和圆、椭圆及直线
转载
2024-10-21 17:06:06
64阅读
亚像素图像大家有没有你想过,在软件层面,如何提高图像处理的精度?比如,我们要用图像处理测量工业零件的周长,怎么在不改变硬件条件的情况下尽可能得到更高的精度? 我们平时看到的图像都是由像素点组成的,不知道大家有没有思考过,相邻像素点之间像素值大小跳变太大的问题? 为了方便理解,这里举个稍微离谱一点的例子 将一张实际大小为 8cm x 8cm 的图片通过计算机转换为一张 4 x 4 个像素点的图像,那
转载
2024-04-07 14:04:15
792阅读
1 引言 数字图像的边缘检测是图像分割、目标识别、区域形状提取等图像处理领域的重要基础。在进行图像理解和分析时,第一步往往是边缘检测。目前边缘检测已经成为机器视觉领域最活跃的课题之一,其研究具有非常重要的理论意义和实际应用价值。传统的边缘检测方法的检测精度最高只能达到一个像素级,但是,随着科学技术的飞速发展,工业检测等应用对精确度的要求不断提高
转载
2023-12-19 20:52:38
170阅读
在数字图像处理中,亚像素(Sub-pixel)指的是对像素的进一步划分或者细化,以实现更高精度的测量和计算。在图像处理中,每个像素表示一个区域内的颜色或灰度值,而亚像素则表示每个像素内部更细小的颜色或灰度值变化。通常情况下,图像的分辨率是有限的,每个像素的大小是固定的。如果需要进行更高精度的测量或计算,例如图像配准、图像插值或者运动估计等,则需要使用亚像素技术来实现更高的精度。亚像素技术可以通过对
转载
2023-09-24 22:12:51
204阅读
在OpenCV中,边缘检测的方法主要有以下几种:Sobel算子: Sobel算子是边检测器,它使用3×3内核来检测水平边和垂直边。Sobel算子有两个,一个是检测水平边缘的,另一个是检测垂直边缘的。在OpenCV中,使用cv2.Sobel函数进行边缘检测,具体参数为img(灰度图像矩阵),cv2.CV_64F(数据类型),1或0(水平或垂直方向),0或1(水平或垂直方向),ksize=6(卷积核的
转载
2024-10-22 14:23:43
207阅读
基于多项式插值的亚像素边缘定位算法一. 背景二. 你的经历三. 代码实现(龟速版)1. 梯度幅值2. 梯度方向3. 单像素边缘4. 亚像素坐标四. 龟速测试五. 提取坐标六. 加速版1. 龟速分析2. 加速版代码七. 应用与下载 一. 背景在测量或者定位的应用中会涉及到边缘检测, 但是像 OpenCV 这样的开源库中边缘检测算法的精度在像素级别, 比如 Canny, Sobel blablabl
转载
2024-05-29 11:18:43
292阅读
Image Basics 一切的开始:图像的基础-像素(pixel),如何通过像素生成图像,如何通过OpenCV来操控图像中的像素点。像素的定义熟悉的可以暂时跳过这一段,主要来科普图像的组成。比如说我们常见的一个显示器的分辨率是1080p(蓝光)其标准大小为1920x1080 也就是,长:1920个像素;宽:1080个像素点。合起来总共是1920x1080=2073600个像素点。目前我们常见的图
转载
2024-05-03 14:10:31
105阅读
在介绍双线性插值之前,先讲一下线性插值:已知数据(x0,y0),要计算[x0,x1]区间内某一位置x在直线上的y值:上面这个比较好理解,仔细看就是用x和x0,x1的距离作为一个权重,用于y0和y1的加权。双线性插值本质就是在两个方向上做线性插值。接下来介绍双线性插值,假设源图像大小为m*n,目标图像为a*b。那么两幅图像的边长比为:m/a和n/b。在程序设计时要用浮点型来保存。则目标图像的第(i,
转载
2024-05-27 22:51:03
191阅读
亚像素面阵摄像机的成像面以像素为最小单位。例如某CMOS摄像芯片,其像素间距为5.2微米。摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的。但是在微观上,它们之间还有无限的更小的东西存在。这个更小的东西我们称它为“亚像素”。实际上“亚像素”应该是存在的,
转载
2024-03-20 11:29:01
311阅读
cv::goodFeaturesToTrack(imGrayPre, prepoint, 1000, 0.01, 8, cv::Mat(), 3, true, 0.04);//第三个参数是提取的最大点数,0.01返回寻找角点的质量,8表示相邻角点间的最小距离,mask表示不会在mask为零的地方提取角点,最后一个参数一般不变通过上面得到的prepoint像素值是整数级别的,还不够精确;我们接下来求
转载
2024-04-13 21:55:31
195阅读
求帮忙下载:联系方式:QQ:5136902961.pkma75 资源积分:1分备注:pdf格式,用曲线拟合的方法计算亚像素,编程易实现,具有较强的实用价值感谢Gurus(咕噜)503502929提供!2.上 传 者:kuailechengzi 资源积分:1分备注:亚像素边缘检测方法,此种方法先经过传统模板算子确定边缘的大致位置,然后用曲线拟合方法求出边缘的精确位置,
转载
2024-08-23 16:21:40
86阅读
PC将我们带入个人计算时代,iPhone将我们带入移动计算时代,那么Vision Pro则将我们带入空间计算时代。苹果Vision pro是否能成功呢?新的发明,新的科技产品要引爆市场,离不开“想动”和“不想动”,想动就是这个产品看起来很吸引人,玩起来爱不释手,能触发人的内心欲望。“不想动”就是“懒”,几乎所有的发明本质都离不开“懒”,都是少费力,多挣钱,多挣了钱还是为了将来能懒。 苹果Visio
转载
2024-05-01 17:41:38
124阅读
仿射变换仿射变换数学上可以表示为矩阵乘法,本质是线性变换。具体可以实现为图像的平移、旋转、以及缩放等。插值算法插值的本质就是利用原图已知点的像素来计算新图对应位置上的像素值。插值算法就是如何对原图像素点进行选取然后计算。最近邻法(nearest)最近邻法不需要计算,只需要按照图像比例,将新图像素点映射到原图像素点获取像素值。假设新图坐标为(des_x,des_y),新图长宽为img_o_h、img
深度学习的许多应用中需要将提取的特征还原到原图像大小,如图像的语义分割、生成模型中的图像生成任务等。通过卷积和池化等技术可以将图像进行降维,因此,一些研究人员也想办法恢复原分辨率大小的图像,特别是在语义分割领域应用很成熟。常见的上采样方法有双线性插值、转置卷积、上采样(unsampling)、上池化(unpooling)和亚像素卷积(sub-pixel convolution,PixelShuff
转载
2024-03-19 15:48:41
431阅读
一、简介 上采样的技术是图像进行超分辨率的必要步骤,最近看到了CVPR2019有一些关于上采样的文章,所以想着把上采样的方法做一个简单的总结。 看了一些文章后,发现上采样大致被总结成了三个类别: 1、基于线性插值的上采样 2、基于深度学习的上采样(转置卷积) 3、Unpooling的方法 其实第三种只是做各种简单的补零或者扩充操
转载
2024-05-14 10:36:36
202阅读
上篇文章,已对点和边缘两种情形的亚像素定位算法做了详细描述。因图像特征不同,亚像素定位算法也会不同,我们可以根据图像的具体特征,进行数学建模以达到定位目的。这里另起一篇说明角点情形的亚像素定位问题。1. 角点几何特征角点位置特征:边缘的交点,且角点与边缘点的连线和边缘点的梯度方向垂直。如上图所示,假设一个起始角点q在实际亚像素角点附近。p点在q点附近的邻域中,若p点在均匀区域内部,则p点的梯度为0
转载
2024-04-18 09:56:35
759阅读
Opencv中图像的遍历与像素操作 我们先来介绍下cv::Mat类的获取像素的成员函数at(),其函数原型如下:template<typename _Tp> _Tp& at(int i0, int i1);
//由于Mat可以存放任意数据类型的元素,所以该函数是用模板函数来实现的 //它本身不会进行任何数据类型转换,在调用的过程
转载
2024-04-09 10:02:09
77阅读
双线性插值其函数其实不是线性的,函数类似于F(x,y)=a0+a1x+a2y+a3xy。也可以表示为(Ax+B)*(Cy+D)从这种表示我们就可以看出来是两个线性函数的乘积,由向量的叉积我们知道,得到的结果是他们的法向量。通过函数我就可以看出来,我们想要得到的插值点是位于任意一(x,y)位置上的第三维的值F(x,y)。我们可以想象我们正在处理一
转载
2024-03-15 08:27:51
166阅读