学习内容:CART树算法原理损失函数分裂结点算法正则化对缺失值处理优缺点应用场景sklearn参数  CART树  算法分类与回归树的英文是Classfication And Regression Tree,缩写为CART。CART算法采用二分递归分割的技术将当前样本集分为两个子样本集,使得生成的每个非叶子节点都有两个分支。非叶子节点的特征取值为True和False,左分支取值
题干见官网注意点时间限制:1s解题思路1、暴力嵌套循环 O(n^2) 70分2、排序+前缀和首先我们要知道评价一个阈值好坏的标注:预测正确的数目越大越好 对于一个阈值来说:预测正确数目 = 阈值小于自己且挂科 + 阈值大于等于自己且未挂科既然循环不可以,就用前缀和 O(m+n) 处理一下数据(这或许也是空间换时间? 1、新建数组sum[ Num +1 ],其中Num 是输入的行数 2、对于sum[
转载 2024-03-11 10:17:32
155阅读
 这个小项目功能、实现都不算复杂,没有用到J2EE主流框架,而是通过注解、反射来实现的简单的IOC、DB、LOG、WEB等功能。个人感觉,总体设计来讲一般,对于这个小博客是够用的,过于针对性导致很难扩展下去。而且作者貌似没有对这个项目持续更新下去,感觉挺可惜的。但是,作为小白白来讲,还是具有学习价值的。也想通过分享,把学到的一些东西做个小小的整理。注1:第一个项目是使用xml配置,第二个
转载 2023-11-24 06:00:14
30阅读
机器学习一共有两条主线:问题模型问题提出要求,模型给予解决。线性回归线性回归:用线性模型来解决回归问题。线性回归的重点:回归问题线性方程偏差度量权重更新:优化方法线性回归的算法原理基本思路机器学习的核心概念:在错误中学习。这需要两个步骤,首先知道偏离了多少,然后向减少偏差的方向调整权值。偏差度量:找到目标和实际的偏差距离,用“损失函数”表示;权值调整:通过“优化方法”来调整权值,使得偏差减小。数学
A*算法python简单可视化实现A*算法详解:A*算法详解python实现:使用堆优化加快查找最小代价点 详细流程都写在注释里了使用方法:# 参数为地图高、宽、方格尺寸、起点坐标(0开始)、终点坐标(0开始)、延迟时间 demo = MiniMap(20, 30, 30, (0, 0), (29, 19), 0.05)鼠标左键单击方格添加/删除障碍物,中键重置路径(不改变障碍物),右键开始寻路。
今天一个Python学习的干货。几个印度小哥,在GitHub上建了一个各种Python算法的新手入门大全,现在标星已经超过2.6万。这个项目主要包括两部分内容:一是各种算法的基本原理讲解,二是各种算法的代码实现。传送门在此:https://github/TheAlgorithms/Python简单介绍下。算法的基本原理讲解部分,包括排序算法、搜索算法、插值算法、跳跃搜索算法、快速选择算
1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。一个
转载 2023-06-30 11:55:06
187阅读
一、算法简介1、定义算法是一组完成任务的指令;有限步骤内解决数学问题的程序;为解决某项工作或某个问题,所需要有限数量的机械性或重复性指令与计算步骤。2、算法的条件(5)输入性,输出性,明确性,有限性,有效性。3、时间复杂度O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n!)4、常见的大O运行时间(n一般为元素的个数):O(
转载 2023-08-10 15:24:31
100阅读
算法的五大特性:1、输入:有0个或多个输入2、输出:有0个或多个输出3、确定性:算法每一步都有一定的含义,不会出现二义性4、有穷性:算法在执行有限的步骤之后会结束,而不是无线循环执行。5、可行性:算法的每一步都是可行的   如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?  &nbs
  最近思考了一下未来,结合老师的意见,还是决定挑一个方向开始研究了,虽然个人更喜欢鼓捣。深思熟虑后,结合自己的兴趣点,选择了NLP方向,感觉比纯粹的人工智能、大数据之类的方向有趣多了,个人还是不适合纯粹理论研究 :)。发现图书馆一本语言处理方面的书也没有后,在京东找了一本书--《NLP汉语自然语言处理原理与实践》,到今天看了大约150页,发现还是很模糊,决定找点代码来看。   从最简单
转载 2023-12-18 14:58:30
59阅读
文章目录定义模板方法模式适用场景日常例子理解该模式了解模板方法设计模式模板方法模式的UML类图现实中的模板方法模式模板方法模式——钩子好莱坞原则与模板方法模板方法的优缺点问答 定义模板方法模式行为模式主要关注对象的响应性。它处理对象之间的交互以实现更强大的功能。模板方法模式是一种行为设计模式,通过一种称为模板方法的方式来定义程序框架或算法。例如,你可以将制作饮料的步骤定义为模板方法中的算法。模板
转载 2023-07-07 21:47:18
103阅读
A*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithmA *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权
转载 2023-06-29 11:52:31
108阅读
斐波那锲数列def fib(num): a = 0 b = 1 n = 0 while n < num: a, b = b , a + b yield a n += 1 print('done') for i in fib(9): print(i) print(fib(9))杨辉三角def tr
转载 2023-06-21 22:26:05
82阅读
1.项目背景萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。本项目通过FA萤火虫优化算法寻找最优的参数值来优化支持向量机回归模型。2.数据获取本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下: 数据详情如下(部分展示):3.数据预处理3.1
 简单查找这个算法应该是最普通的算法or最直接的算法了 工作原理:在一数组里面找一个数按顺序一个一个查找如果匹配,则返回索引如果在过完一遍数组都没有匹配到,则输出none 代码展示(python): 1 def Simple_Search(list, item): 2 for i in range(0, len(list) - 1): 3
算法是程序的灵魂,每个程序员,尤其是高手程序员,对算法的掌握应该是如数家珍,必须要熟悉。算法非常枯燥,但是研究透了对你的程序功底非常有帮助。那么用Python如何实现主流的算法呢?今天推荐一个巨牛的repo,不仅把主流的算法都讲了一遍还用Python代码实现了,一起来看一下。 01 Github标星近4万这个repo有近23个大牛一起维护的,领头的
Python中数据结构和算法的理解:Python中数据结构指的是静态的描述数据元素之间的关系,算法指的是解决问题的方法或步骤,换句话说算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体数据结构和算法是一名程序开发人员的必备基本功,所以需要我们平时不断的主动去学习积累,接下来将自在文章中为大家具体介绍这两个知识点,希望对大家有所帮助。引入概念先来看一道题:如果 a+b+c=1000,且
python 的常见排序算法实现算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡
EM 算法求解高斯混合模型python实现 注:本文是对《统计学习方法》EM算法的一个简单总结。1. 什么是EM算法?  引用书上的话:概率模型有时既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了。E
一、斐波那契数列(递归VS动态规划)1、斐波那契数列——递归实现(python语言)——自顶向下递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内存爆满。1 def fib(n): 2 #终止条件,也就是递归出口 3 if n == 0 or n == 1: 4 return 1 5 else: 6
  • 1
  • 2
  • 3
  • 4
  • 5