1 内容介绍近几年来,随机游走模型(random walk)与引导滤波器(guided filter)在图像处理领域受到了研究者们的广泛关注。前者已经被应用于图像处理的多种领域——图像融合、图像平滑、图像增强、图像分割等,并且均取得了良好的效果;后者由于具有极好的保边平滑效果,也得到了越来越多研究者的青睐。这篇文章提出了两种多聚焦图像融合算法,并且这两种算法有一个相似的地方,即通过同时将随机游走模
图像梯度图像梯度计算的是图像变化的速度 对于图像的边缘部分,其灰度值变化较大,梯度值也较大相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小。图像梯度计算需要求导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值(近似导数值)。(差分,离散)Sobel算子1 #Sobel算法
2 #dst = cv2.sobel(src,depth,dx,dy,ksize)
3 #d
转载
2023-07-05 14:09:48
125阅读
梯度的概念 函数 z = f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一个属于D点P(x,y),都可定出一个向量这个向量称为函数 z = f(x,y)在点P出的梯度,记为如下:图像梯度的定义图像函数f(x,y)在点(x,y)的梯度是一个具有大小和方向的矢量,设为Gx 和 Gy 分别表示x方向和y方向的梯度,这个梯度的
转载
2024-01-29 00:38:42
143阅读
通过python程序,采用牛顿法和梯度下降法求解多元一次函数的线性回归方程梯度下降法原理梯度就是表示某一函数在该点处的方向导数沿着该方向取得较大值,即函数在当前位置的导数Δ=df(Ɵ)÷d(Ɵ)上式中,Ɵ是自变量,f(Ɵ)是关于Ɵ的函数,Ɵ表示梯度 简单来说Δ就是函数相对于自变量Ɵ的求导梯度下降算法公式: Ɵ=Ɵ0-Ƞ*Δf(Ɵ0)其中Ƞ是学习因子,由我们自己定义,Ɵ即为数据更新后下一个Ɵ0f(Ɵ
转载
2023-10-09 18:45:08
52阅读
优化算法经常要用到导数、梯度、Hesse矩阵等,因此编写了一个类用于实现这些功能 建立一个Function类,构造函数的参数是一个函数其中part的功能是求偏导,var_index表示是第几个变量,val表示这些变量的值diff的功能是方便一元函数求导私有函数__diff_是为了hesse编写,传入要求导的变量,返回一个求导后的Function类hesse函数利用__diff_函数计算H
转载
2023-05-27 12:27:43
197阅读
# Python中的图像梯度
图像处理是计算机视觉中的一个核心领域,其中图像梯度是理解图像性质的基本工具。图像梯度描述了图像中像素强度变化的方向和幅度,对于边缘检测、特征提取等任务至关重要。本文将介绍图像梯度的基本概念、计算方法,以及如何在Python中实现这些方法。
## 什么是图像梯度?
图像梯度表示图像强度函数(灰度图像的情况下,强度值相似于像素值)的局部变化。它量化了图像某一点的变化
一、全景图像拼接原理介绍1.1 背景介绍 图片的全景拼接如今已不再稀奇,现在的智能摄像机和手机摄像头基本都带有图片自动全景拼接的功能,但是一般都会要求拍摄者保持设备的平稳以及单方向的移动取景以实现较好的拼接结果。这是因为拼接的图片之间必须要有相似的区域以保证拼接结果的准确性和完整性。本文主要简单描述如何用 Python 和 OpenCV 库实现多张图片的自动拼合。1.2 基本原理
转载
2024-06-08 22:17:55
164阅读
1.算法功能简介 色彩标准化融合对彩色图像和高分辨率图像进行数学合成,从而使图像得到锐化。色彩归一化变换也被称为能量分离变换( Energy Subdivision Transform),它使用来自融合图像的高空间分辨率波段对输入图像的低空间分辨率波段进行增强。该方法仅对包含在融合图像波段的波谱范围内对应的输入波段进行融合,其他输入波段被直接输出而不进行融合处
转载
2024-06-05 21:13:16
62阅读
图像梯度我们知道一阶导数可以用来求极值。把图片想象成连续函数,因为边缘部分的像素值与旁边的像素明显有区别,所以对图片局部求极值,就可以得到整幅图片的边缘信息。不过图片是二维的离散函数,导数就变成了差分,这个查分就变成了图像梯度。 1. 垂直边缘提取滤波是应用卷积来实现的,卷积的关键就是卷积核。我们来考察下面这个卷积核:这个核是用来提取图片中的垂直边缘的,怎么做到的呢?看下图:当前列左右两
转载
2023-08-08 11:08:08
497阅读
注意,sobel算子和laplace算子加和均为0! 代码如下:import numpy as np
import cv2 as cv
def sobel_demo(image):
#CV_8U的取值范围为[0,255]
#此处ddepth经过加减,范围已经超过CV_8U,所以取CV_32F
#dx=1,dy=0,先求dx方向
g
转载
2023-06-19 15:07:22
248阅读
# 图像融合 Python 实现指南
## 1. 介绍
作为一名经验丰富的开发者,我将指导你如何在 Python 中实现图像融合。图像融合是将两幅图像融合成一幅图像的过程,通常用于增强图像质量或获取更多信息。在本文中,我将向你展示实现图像融合的完整流程,并提供相关的代码示例和解释。
## 2. 流程
以下是实现图像融合的基本步骤:
```mermaid
flowchart TD
原创
2024-05-29 04:00:22
78阅读
# 图像融合技术及其Python实现
随着计算机视觉和数字图像处理技术的发展,图像融合逐渐成为了一个重要的研究领域。图像融合指的是将来自多个图像的信息整合成一个综合图像,以提升信息的质量和可用性。这种技术在许多应用中都发挥着重要的作用,包括医学成像、遥感、监控等。
## 图像融合技术的基本原理
图像融合技术的核心在于将不同来源、多种类型的图像数据,经过处理和分析,生成一种全新的图像。这种全新
图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大,相反,对于图像中较平缓的部分,其灰度值变化较小,相应的梯度值也较小。一般情况下,图像梯度计算的是图像的边缘信息,(在此图像梯度并不是纯数学意义上的梯度(需要求倒数),图像梯度一般通过计算像素值的差值来得到梯度的近似值(近似导数值))一:sobel理论基础sobel算子是一种离散的微分算子,该算子结合了高斯平滑和微分
转载
2024-05-14 12:54:56
332阅读
1,Image Morphing 介绍图像融合简单来说,通过把图像设置为不同的透明度,把两张图像融合为一张图像(一般要求图像需要等尺寸),公式如下:可以根据这个公式尝试实现一下融合技术,利用 OpenCV 的 cv2.addWeighted() 函数,代码如下:import cv2
import numpy as np
file_path1 = "E:/data_ceshi/1.jpg"
fil
转载
2023-08-06 12:52:18
507阅读
在 Python 的 OpenCV 库中,可以使用 cv2.vconcat 函数和 cv2.hconcat 函数实现图像的垂直拼接和水平拼接。cv2.vconcat 函数 cv2.vconcat 函数用于将两个或多个图像垂直拼接在一起,即将多个图像沿垂直方向进行拼接。 该函数的调用方式如下:dst = cv2.vconcat(src)其中,src 参数是一个包含多个图像的元组或列表。所有图像都必须
转载
2023-08-06 00:00:43
745阅读
基于GPU加速的医学图像融合分析-计算机应用技术专业论文摘要不同成像设备因其成像原理不同,所成图像也会各具特色。将多幅不同类型的医 学图像进行融合处理,可使各图像优势得到相互补充,图像信息得到全面利用,为临 床诊疗提供更加完善、全面、丰富的医学图像。无论是在医学研究还是临床应用方面,医学图像处理技术发挥的效力和影响力都 越来越大,这也促使我们对 CT 和 MRI 图像融合的速度要求越来越高,迫使我
转载
2023-10-09 21:19:48
184阅读
遥感图像融合的定义是通过将多光谱低分辨率的图像和高分辨率的全色波段进行融合从而得到信息量更丰富的遥感图像。常用的遥感图像融合方法有Brovey\PCA\Gram-Schmidt方法。其中Gram-Schmidt方法效果较好,且应用广泛。该方法由CraigA.Laben等人提出,已经被封装到多个遥感图像处理软件中。对于此算法的叙述,国内的李存军写的《两种高保真遥感影像融合方法比较》复述的很清楚,
转载
2023-08-03 14:59:48
305阅读
@TOC(图像梯度)图像梯度图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小。图像梯度计算需要求导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值(近似导数值)。(差分,离散)Sobel算子、Scharr算子和Laplacian算子的使用。Sobel理论基础Sobel算子是一种离散的微分
原创
2022-05-27 11:53:13
1375阅读
图像平均梯度(Image Average Gradient)是图像处理和计算机视觉领域中的一个重要概念,其主要用于衡量图像的清晰度和边缘特征。计算图像的平均梯度不仅可以用于图像的质量评估,还可以为各种图像分析任务提供基础。本文将详细记录如何在 Python 中实现图像平均梯度的计算过程,包括背景、抓包、报文结构、交互过程、安全分析及工具链集成等方面。
### 协议背景
图像平均梯度的引入可以追
1.张量运算的导数:梯度 梯度(gradient)是张量运算的导数。它是导数这一概念向多元函数导数的推广。多元函数是以张量作为输入的函数。 假设有一个输入向量 x、一个矩阵 W、一个目标 y 和一个损失函数 loss。你可以用 W 来计算预测y_pred,然后计算损失,或者说预测值 y_pre
转载
2024-04-11 08:46:21
70阅读