from tensorflow import feature_column from tensorflow.keras import layers在Tensorflow中,通过调用tf.feature_column模块来创建feature columns。有两大类feature column,一类是生成连续特征dense tensor的Dense Column;另一类是生成离散特征sparse t
我们知道,再网络训练好之后,只需要forward过程就能做预测,当然,我们也可以直接把这个网络当成一个feature extractor来用,可以直接用任何一层的输出作为特征,根据R-CNN论文对Alexnet的实验结果,如果不做fine-tuning,pool5和fc6和fc7的特征效果并没有很强的提升,所以,如果直接用作feature extractor,直接用pool的最后一层输出就OK.这
数据输入与特征工程?=??(?)之(?,?)y=fw(x)之(x,y):是模型的输入数据,对应了机器学习算法工程中的特征工程和模型构建中的模型输入。 w也需要初始化。无论输入如何变化,最终都要转成tensor才能被tensorflow计算。 tensorflow 在实现?=??(?)y=fw(x)时, 把x,y抽象成tensor;f_w抽象成Model/estimator;tensor之间的复杂操
  在使用tensorflow搭建模型时会有特征工程的工作,今天介绍一下tensorflow特征工程的api:tf.feature_column。  1、tf.feature_column.input_layertf.feature_column.input_layer( features, feature_columns, weight_collec
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec本文章内容比
TF – Kernels模块 TF中包含大量Op算子,这些算子组成Graph的节点集合。这些算子对Tensor实现相应的运算操作。图 4 1列出了TF中的Op算子的分类和举例。 图 4 1 TensorFlow核心库中的部分运算  OpKernels 简介 OpKernel类(core/framework/op_kernel.h)是所有Op类的基类。继承OpKernel还可
转载 9月前
69阅读
Attentional Feature Fusion摘要1 引言2 Related Work3. Multi-scale Channel Attention(多尺度通道的关注)4. 注意力特征融合 Attentional Feature Fusion5. Experiments6. Conclusion 注意力特征融合作者:Yimian Dai1 Fabian Gieseke2,3 Stefan
# #作者:韦访 1、概述换了个固态硬盘,本想装最新的系统mint 19,谁知道却是个坑,NVIDIA驱动和CUDA工具老是装不上去,各种问题,折腾了几天,还是用回了原来的系统。不过,这次软件改了一下,使用了python3.5+tensorflow1.9+CUDA9.0 。这一讲,来学学非常热门的人脸识别。首先介绍MTCNN原理,然后介绍如何利用深度卷积网络提取人脸特征,以及如何利用提取的特征进行
转载 2024-08-07 08:59:26
50阅读
TensorFlow入门TensorFlow三个基础核心概念:计算图、Tensor、Session一、计算图:在TensorFlow中,计算图是一个有向图,用来描述计算节点以及计算节点之间的关系,所以在TensorFlow中我们存储一个值或者数组的时候,存的其实是这个值或者数组的计算图而不是其本身的数字。我们可以用写一个简单的例子来验证一下:GPU版本import tensorflow as tf
采样介绍假如我们有一个多分类任务或者多标签分类任务,给定训练集(xi,Ti),其中xi表示上下文,Ti表示目标类别(可能有多个).可以用word2vec中的negtive sampling方法来举例,使用cbow方法,也就是使用上下文xi来预测中心词(单个targetTi),或者使用skip-gram方法,也就是使用中心词xi来预测上下文(多个target(Ti)).我们想学习到一个通用函数F(x
tensorflow实现线性回归模型1.变量(1)变量的创建(2)变量的初始化(3)变量的作用域2.可视化学习Tensorboard(1)开启tensorboard(2)增加变量显示3.tensorflow实现线性回归实战(1)Tensorflow运算API(2)梯度下降API(3)实现线性回归4.模型加载和保存5.命令行参数 1.变量(1)变量的创建变量也是一种OP,是一种特殊的张量,能够进行
      MFCC 参数考虑了人耳的听觉特性,将频谱转化为基于梅尔频标的非线性频谱,然后转换到倒谱域上。由于充分考虑了人的听觉特性,而且没有任何前提假设,MFCC 参数具有良好的识别性能和抗噪能力。       由于人类对于声音高低的的感知强度与该声音的频率的对数近似成正比,梅尔频率正是体现出了这种声音频率与人类感知声音高低
图像编码处理一张RGB三通道的彩色图像可以看成一个三维矩阵,矩阵中的不位置上的数字代表图像的像素值。然后图像在存储时并不是直接记录这些矩阵中的数字,而是经过了压缩编码。所以将一张图像还原成一个三维矩阵的过程就是解码的过程,反之就是编码了。tensorflow提供了对jpeg、png等常见图像格式的编码/解码函数,以下代码示范tensorflow对jpeg格式图像的编码/解码函数。import te
tensorflow实现卷积层神经网络在卷积层神经网络中,第一个卷积层会直接接收到像素级的输入,每个卷机操作只处理一小块图像,进行卷机变化后再传入到后面的网络,每一层卷机(也可以说是滤波器)都会提取到最有效的特征。这种方法可以提取到图像中最基础的特征,比如不同方向的边或者拐角,而后再进行组合和抽象形成更高阶的特征。图像中的特征无非就是点和边,无论多么复杂的图像都是点和边组合而成的,人眼识别物体的方
以往我们在构建模型并进行训练时,一般都是先建立placeholder,然后使用Seeion中的feed_dict机制将数据feed给模型进行训练或者预测。使用这种方式十分灵活,可以将所有数据读入内存中,然后按照batch进行feed;也可以建立一个generator,然后按照一个batch大小将数据读入。但是这种方式效率较低,难以满足高速计算的需求。Tensorflow开发者也建议停止使用这种方式
转载 2024-03-03 19:38:08
73阅读
目录0、准备1、数据处理---图片格式转成TFRecord格式2、模型训练3、验证训练后的效果说明:此处可以模仿源码中inception v3的分类案例slim预训练好的包含inception v1,inception v2,inception v3,inception v4,mobilenet v1,mobilenet v2,NasNet,pNasNet等。可以根据需要进行选择。0、准备0.1准
yourTensor.get_shape().as_list()
原创 2022-07-15 17:23:32
399阅读
计算图的概念 计算图是TensorFlow中最基本的一个概念,TensorFlow中所有的计算都会被转化为计算图上的节点。 TensorFlow----Tensor(体现数据模型)和Flow(体现计算模型) 。Tensor就是张量。张量这个概念在物理和化学中有不同的解释,在本文中张量可以简单的理解为多维数组。Flow则体现了他的计算模型,中文翻译是‘流’,他直观的表达了张量之间通过计算相互转化的过
学了tf比较长一段时间了,一直没有搞懂tf中的variable_scope的用法。感觉有些知识点很零碎,这次看了一本书(质量比想象中的要好很多啊),整体的回顾一下tf。1. tf变量管理tf提供了通过变量名称来创建或者获取一个变量的机制。通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递(确实是一个痛点)。tf中通过变量名称获取变量的机制主要是通过t
TensorFlow的核心概念TensorFlow™ 是一个采用 数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由
  • 1
  • 2
  • 3
  • 4
  • 5