本文通过K均值算法作为例子研究数据聚类分析一、无监督学习概念无监督学习可以从给定的数据集中找到感兴趣的模式。无监督学习,一般不给出模式的相关信息。所以,无监督学习算法需要自动探索信息是怎样组成的,并识别数据中的不同结构。二、什么是聚类聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小。 聚类中没有任何指导信息,完全按
转载
2024-03-18 08:13:56
62阅读
本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡、分类难度差异的一个 loss,总之这个工作一片好评就是了。看到这个 loss,开始感觉很神奇,感觉大有用途。因为在 NLP 中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。硬截断整篇文章都是从二分类问题出发,同
转载
2023-07-25 08:09:54
87阅读
class FocalLoss(nn.Module): def __init__(self, gamma = 2, alpha = 1, size_average = True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.size_average = size_average self.elipson = .
原创
2021-08-13 09:29:44
1182阅读
深度学习(Deep Learning)是机器学习(Machine Learning)的一大分支,它试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。逻辑回归(Logistic Regression,也译作“对数几率回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。 符号约
转载
2024-01-02 17:47:56
226阅读
可能你要问了,我们是在讨论“机器学习”,为何要纠结“Logistic”一词的译法呢?并不是因为我们“好为人师”,而是这关系到对“Logistic 回归”内涵的理解。下面我们就从为什么需要 Logistic 回归开始说起。为什么需要Logistic回归首先,需要强调的是,Logistic 回归也属于监督学习之列,虽然带有“回归”二字,但它却是名副其实的“分类”算法。通过前面的学习,我们知道,分类与传
转载
2024-06-23 22:25:49
61阅读
一、面对一个多分类问题,如何设计合理的损失函数呢?
转载
2024-03-14 14:37:30
167阅读
专栏目录: 本文 +pytorch快速入门与实战——一、知识准备(要素简介)pytorch快速入门与实战——二、深度学习经典网络发展pytorch快速入门与实战——三、Unet实现pytorch快速入门与实战——四、网络训练与测试注意:教程模块间独立性较高,任何地方均可跳跃性阅读,别管是不同文章之间,还是文章的不同模块。 怎么开心怎么来。反正都是从“这都是啥”到”呵呵就这“ 部分列举的不详细是因为
转载
2024-02-29 11:25:50
55阅读
Focal loss 出自何恺明团队Focal Loss for Dense Object Detection一文,用于解决分类问题中数据类别不平衡以及判别难易程度差别的问题。文章中因用于目标检测区分前景和背景的二分类问题,公式以二分类问题为例。项目需要,解决Focal loss在多分类上的实现,用此博客以记录过程中的疑惑、细节和个人理解,Keras实现代码链接放在最后。框架:Keras(tens
转载
2024-04-26 06:55:03
113阅读
BERT 预训练模型及文本分类介绍如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义。本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践。知识点语言模型和词向量BERT 结构详解BERT 文本分类BERT 全称为 Bidirectional Encoder Representations from Transforme
转载
2024-09-24 10:04:26
58阅读
一、统计软件简介 1、SPSS统计简介 SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服
1 前言2 收集数据3 探索数据4 选择模型5 准备数据6 模型-构建训练评估机器学习主要包括模型构建、模型训练、模型评估,在选择模型章节中已经对如何根据S/W的比率进行模型的选择,其包括n-gram模型或者序列模型,本章节内容主要描述如何运行分类算法进行模型训练,这也是机器学习的核心内容,主要是使用TensorFlow的tf.keras
转载
2024-03-22 14:08:04
81阅读
文章目录前言一、Keras的mnist数据集二、建立sequential顺序model2.绘图结果和测试结果三、网络容量和优化总结 前言Keras是TensorFlow2.X的一个实现库,很多模型基于Keras搭建 一、Keras的mnist数据集mnist数据集是KerasAPI公开的数据集,是(28,28)的图像数据集二、建立sequential顺序model对于分类问题必须使用softm
转载
2024-07-24 14:01:24
75阅读
一、任务区分多分类分类任务:在多分类任务中,每个样本只能被分配到一个类别中。换句话说,每个样本只有一个正确的标签。例如,将图像分为不同的物体类别,如猫、狗、汽车等。多标签分类任务:在多标签分类任务中,每个样本可以被分配到一个或多个类别中。换句话说,每个样本可以有多个正确的标签。例如,在图像标注任务中,一张图像可能同时包含猫和狗,因此它可以同时被分配到 "猫" 和 "狗" 这两个标签。二、sklea
#RNN 循环神经网络
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(1) # set random seed
# 导入数据
mnist = input_data.read_data_sets('MNIST_data', one_hot
一、简介tensorflow提供了一个功能强大的特征处理函数tf.feature_column,feature columns是原始数据与estimator之间的过程,其内容比较丰富,可以将各种各样的原始数据转换为estimator可以用的格式。特征数据主要包括categorical和dense(numeric或者continuous)两类,处理方法是使用tensorflow中的feature_c
看了好几次这个loss了,每次都容易忘,其他的博客还总是不合我的心意,所以打算记一下:先说二值loss吧,即二分类问题 一、二分类直接解释:假设有两个类0,1。我们需要做的就是,使得属于0类的训练样本x经过网络M(x)之后的输出y尽可能的靠近0,相反则使得属于1类的训练样本x经过网络M(x)之后的输出y尽可能的靠近1。分析上面这个公式,我们训练网络的直接手段当然是采用梯度下降法使得Los
转载
2023-11-28 08:19:49
65阅读
在深度学习领域,尤其是在多分类问题中,使用 `binary_crossentropy loss` 作为损失函数时可能会遇到一定的困惑。本文将详细介绍如何在 PyTorch 中应用 `binary_crossentropy` 来解决多分类问题。这将包括环境准备、分步指南、配置详解、验证测试、优化技巧和扩展应用等部分。
### 环境准备
在处理深度学习任务之前,首先需要准备合适的软硬件环境。以下是
模型创建加载数据这里是对tensorflow的学习,所以没有什么特别有意义的数据,我是使用sklearn生成的二分类数据sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per
转载
2024-04-16 16:59:26
19阅读
现实生活中,二分类的问题毕竟还是少数,多分类的问题才是我们大部分时间会遇到的问题,下面我就以fashion_mnist为数据集,来看看多分类的问题。import tensorflow as tf
from tensorflow import keras
#先下载数据集
(train_image , train_label),(test_image , test_label) = tf.keras
转载
2024-04-13 23:46:21
21阅读
之前我们介绍过逻辑回归的二分类问题,但是在我们实际应用中往往都是多分类问题,这里我们以Mnist数据集为例来分析多分类问题,首先Mnist输入为图片,是高维度数据,不同于我们之前的一行或者一列,这里我们先从简单的开始,将28x28矩阵,转化为1x784的矩阵,这样我们的输入数据就和前面的一样,既然要对数据进行处理,那我们先分析一下我们要解析的数据是什么样的。以
转载
2024-02-09 08:32:46
18阅读