要想搞明白Hinge损失函数,不得不来讨论一下SVM(支持向量机)SVM 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,SVM的的学习策略就是间隔最大化。SVM算法原理 SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。 能够分类下列数据的超平面有很多个,但间隔最大的分离超平
w cat duck frog |p1 0.1 0.2 0.2 n_i=第i个样品 |p2 0.2 0.3 0.1 p=pixel |p3 0.5 0.1 0.1 ------------------------- x | score p1 p2 p3| cat du
相同点二者都是监督学习的分类算法,如果不考虑核函数的话,二者都是线性分类算法,也就是说他们的分类决策面都是线性的,目的都是产生一个决策平面,将两类样本点分开。不同点本质上的不同是损失函数的不同,LR的是log loss SVM损失函数是hinge loss- SVM 损失函数 : - LR 损失函数: 其中 z=y*f(x)优化目标不同,LR的目标函数是logloss,SVM是最大化分类面间距。
Hinge Loss Hinge Loss 是机器学习领域中的一种损失函数,可用于“最大间隔(max-margin)”分类,其最著名的应用是作为SVM的目标函数。在二分类情况下,公式如下: L(y) = max(0 , 1 – t⋅y)其中,y是预测值(-1到1之间),t为目标值(1或 -1)。其含义为,y的值在 -1到1之间即可,并不鼓励 |y|
   ng的MI-003中12 ——SVM一、svm目标函数的由来视频先将LR的损失函数:在上图中,先将y等于0 和y等于1的情况集合到一起成为一个损失函数,然后分别讨论当y等于1的时候损失函数的结果图(上图左)和y等于0的时候的损失函数的结果图(上图右),这里先采用的是单一样本情况,而且图中的cost_1(z)是说明以前的曲线图现在用两条直线逼近图来代替,这里可以看出当z等于
不过SVM并不是“损失函数”、“正则化”等概念的典型例子,至少从题干中的推导过程这个角度来看不是。在任一个机器学习模型的训练过程中,被最大化或者最小化的那个函数,叫作“目标函数”(objective function)。目标函数可以有很多种,比如数据的((负)对数)似然值,比如margin的大小,比如均方误差。如果目标函数是要最小化的,它就也常常被称为“损失函数”(loss functio
CS231n Convolutional Neural Networks for Visual Recognition —— optimization 1. 多类 SVM损失函数(Multiclass SVM loss) 在给出类别预测前的输出结果是实数值, 也即根据 score function 得到的 score(s=f(xi,W)), Li=∑j≠yimax(0,sj−syi+Δ
转载 2017-04-29 22:54:00
124阅读
CS231n Convolutional Neural Networks for Visual Recognition —— optimization 1. 多类 SVM损失函数(Multiclass SVM loss) 在给出类别预测前的输出结果是实数值, 也即根据 score function 得到的 score(s=f(xi,W)), Li=∑j≠yimax(0,sj−syi+Δ
转载 2017-04-29 22:54:00
129阅读
上一篇文章《语音降噪模型归纳汇总》,很意外地收到了点赞收藏和关注,如此的反馈给了我极大的鼓舞,这里就再梳理了一下loss函数相关的知识,以求方便能作为一份工具性质的文章展现出来。能力一般,水平有限,欢迎大家指正。目录前言什么是损失(Loss)? 预测值(估计值)与实际值(预期值、参考值、ground truth)之间会存在差异, “损失”意味着模型因未能产生预期结果而受到的惩罚。损失函数的作用?
1、原理 2、参数 3、score_card 1、原理https://zhuanlan.zhihu.com/p/1013341832、重要参数2.1 正则化参数penalty、c penalty:可以输入"l1"或"l2"来指定使用哪一种正则化方式,不填写默认"l2"。L1正则化会将参数压缩为0,L2正则化只会让参数尽量小,不会取到0。C: 正则化强度的倒数。大于0的浮点数
损失函数(Loss Function): 损失函数(loss function)就是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数的作用:损失函数使用主要是在模型的训练阶段,每个批次的训练数据送入模型后,通过前向传播输出预测值,然后损失函数会计算出预测值和真实值之间的差异值,也就是损失
1.word2vec两个模型的损失函数是什么?知识点:统计语言模型(贝叶斯概率) ->  n-gram(n-1阶马尔科夫假设)  -> 词频统计(大数定律)                 -> 神经概率语言模型  答:word2vec两个模型为CBOW和Skip-gram,cbow和Skip-gram又分为层序soft
转载 2023-11-20 08:49:00
123阅读
目录:人脸识别介绍损失函数发展Softmax lossCenter lossTriplet lossL-softmax lossSphereFace(A-Softmax loss)CosFace(AM-Softmax loss)ArcFace loss人脸识别流程相似度生成训练图片数据采样网络模型训练使用摄像头实时检测 人脸识别介绍MTCNN 实现人脸检测,回答了“是不是人脸”和“人脸在哪”的问
SVM目录一、支持向量机1.线性支持向量机2.非线性支持向量机二、支持向量机重要概念1.函数间隔2.几何间隔3.核函数三、拉格朗日对偶性1.原始问题2.对偶问题3.原始问题与对偶问题的关系4.目标函数四、sklearn中的SVM五、SVM中使用多项式特征六、高斯核函数七、SVM解决回归问题 一、支持向量机支持向量机的基本思想是SVM从线性可分情况下的最优分类面发展而来。最优分类面就是要求分类线不
转载 2024-01-14 19:56:16
46阅读
在构建机器学习模型时,损失函数是优化过程中至关重要的部分。损失函数衡量模型预测值与真实值之间的差距,因此合适的损失函数选择对于改善模型的准确性极为重要。在Python中实现损失函数时,可能会遇到各种问题,本文将详细记录解决"python损失函数"问题的过程。 ### 问题背景 在我们的项目中,模型采用深度学习算法进行图像分类。模型的性能直接影响到业务的成功,良好的分类精度将带来更高的客户满意度
一、线性分类器(1)线性函数线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念。用一个二维空间里仅有两类样本的分类问题来举个小例子。如图所示: C1和C2是要区分的两个类别,在二维平面中它们的样本如上图所示。中间的直线就是一个分类函数,它可以将两类样本完全分开。一般的,如果一个线性函数能够将样本完全正确
损失函数损失函数(Loss function)是用来估量你模型的预测值与真实值 的不一致程度,它是一个非负实值函数,通常用 来表示。损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风险结构包括了风险项和正则项,通常如下所示:其中,前面的均值函数表示的是经验风险函数,代表的是损失函数,后面的 是正则化项(regularizer)或者叫惩罚
转载 2023-12-25 21:47:24
40阅读
tensorflow 层、网络模型、损失函数和优化器之间的关系 层、网络模型、损失函数和优化器之间的关系 多个层链接在一起组成了网络模型,将输入数据映射为预测值。然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度。优化器使用这个损失值来更新网络的权重。层:深度学习的基础组件神经网络的基本数据结构是层。 层是一个数据处理模块, 将一个或
损失函数是用来评价神经网络性能好坏的一个指标,我们对神经网络的优化实则就是对损失函数的处理,我们通过不断调参来寻找最优化参数来使我们的损失函数降到最低,那么我们的神经网络可以说是优化好了。这里我们介绍三种损失函数均方误差完整代码如下 import numpy as np t = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y1 = [0.1, 0.05, 0.6, 0.
直接上结果:图片截选自本文末尾正文:无论在机器学习还是深度学习领域中,损失函数都是一个非常重要的知识点。损失函数有许多不同的类型,根据具体模型和应用场景需要选择不同的损失函数,如何选择模型的损失函数,是作为算法工程师实践应用中最基础也是最关键的能力之一。最近在学习pytorch的时候,参考了很多说明文档和优秀贴文,总结了如何针对应用场景选择合适损失函数、对比不同损失函数的优缺点及相关pytorch
  • 1
  • 2
  • 3
  • 4
  • 5