之前,对SSD的论文进行了解读,可以回顾之前的博客:。为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch。同时,我自己对该项目增加了大量注释:https://github.com/Dengshunge/mySSD_pytorch搭建SSD的项目,可以分成以下三个部分:
数据读取;
网络搭建;损失函数的构建;
网络测试。接下来,本篇博客重点分析损
文章目录损失函数多分类svm损失函数案例问题损失函数代码正则化多项逻辑回归分类器(softmax classifier)问题 损失函数我们知道线性分类器需要输入数据x和参数w,如果我们想优化w,使模型更精确,如果可以写一个函数自动决定哪些w是最优的,就需要一个度量任意某个w的好坏的方法。可以用一个函数把w当输入,然后看一下得分,定量估计w的好坏。这个函数被称为损失函数。 图像分类问题可以选择多种
前言一、已具备的loss曲线图二、AI助力1.为图像建立矩形遮板2.绘制趋势曲线 前言俗话说,一图胜千言,在一篇文章里,图是最吸引人的,画得好便会如虎添翼,让读者对文章主要方法的理解更加容易。今日分享和记录一下绘制损失(loss)函数图时发现的一个事后补救、锦上添花的小小小小~小技巧。看一下成品: 一、已具备的loss曲线图之前通过python的matplotlib或者plotly绘制好部分的l
# 用Python画损失函数曲线
## 介绍
损失函数是机器学习中非常重要的概念,它用于衡量模型的预测值与真实值之间的差距。在训练模型的过程中,我们希望通过调整模型的参数,使得损失函数的值最小化。在本文中,我们将使用Python来画出损失函数的曲线,并通过一个具体的例子来说明。
## 什么是损失函数?
损失函数是用来衡量模型预测值与真实值之间的差距的函数。在机器学习中,我们通常使用均方误差
梯度下降法梯度下降法是求解无约束最优化问题的一种最常用方法,有实现简单的优点。它是一种迭代算法,每一步需要求解的目标函数的梯度向量。假设 f(x) 是 Rn minx∈Rnf(x)x∗ 表示目标函数 f(x)由于负梯度方向是使函数值下降最快的方向,在迭代的每一步,以负梯度方向更新 x梯度下降的相关概念步长:步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度。用下山的例子,步长就是在当前
转载
2023-10-25 22:11:51
76阅读
前言在前面的文章中,我们了解到模型假设、评价函数(损失函数)和优化算法是构成模型的三个关键要素。刚学习人工智能的朋友肯定会有这样的疑问,是不是这三个关键要素都需要我们在日常工作中进行设计呢?其实啊,并不是这样,很多的框架都已经给我们提供了可供选择的损失函数和优化算法,只需要我们根据自己的业务场景来选择最适合的哪一个即可,是不是很easy?一、损失函数1、什么是损失函数? &n
目录1 前言2 回归(Regression)任务2.1 均方误差MSE(mean squared error)2.2 平均绝对误差MAE( mean absolute error)2.3 Huber Loss3 分类(Classification)任务3.1 铰链损失(hinge loss)3.2 交叉熵损失(Cross Entropy)3.2.1 信息熵(Entropy)3.2.2 交叉熵(
各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。已知一张图像属于各个类别的分数,我们希望图像属于正确分类的分数是最大的,那如何定量的去衡量呢,那就是损失函数的作用了。通过比较分数与真实标签的差距,构造损失函数,就可以定量的衡量模型的分类效果,进而进行后续的模型优化和评估。构造损失函数之后,我们的目标就是将损失函数的值最小化,使用梯度下降的方法求得损失函数对于
在机器学习中,对于目标函数、损失函数、代价函数等不同书上有不同的定义。通常来讲,目标函数可以衡量一个模型的好坏,对于模型的优化通常求解模型的最大化或者最小化,当求取最小化时也称loss function即损失函数,也称为成本函数、代价函数。 大多数情况下两者并不做严格区分。损失函数包含损失项与正则项。正则项的目的是提高模型的泛化能力,防止过拟合。本文仅讨论损失项,下面是一些常见的损失函数的损失项。
损失函数和优化损失函数1. 损失函数SVM在线性分类中,分类函数为f(x)= Wx + b,这时,可以用一个函数把W当作输入,然后看一下得分,定量地估计W的好坏,这个函数被称为损失函数。 在这个例子中,猫目前的分类不对,车子分类对了,从这个W来说青蛙的图片是彻底地分类错了,因为青蛙的分数甚至比其他类别的都要低。通常来说我们有N个样本,其中x是算法的输入,在图像分类问题中,x其实是图片每个
机器学习是一门需要不断实验和试错的科学,拥有大量的实战经验几乎比拥有一个好的算法还要重要,没有一个机器学习模型能够对所有的问题有效。因此,想要学好机器学习一定要有非常多的项目练习作为支撑,从实践中探寻机器学习的技法。但一个机器学习项目的实施需要实践者拥有丰富的机器学习理论并具有将理论知识实践的能力,这让很多机器学习小白望而却步。本文将利用sklearn中自带的数据集(鸢尾花数据集),
# Python画多个损失函数图像的实现指南
在深度学习模型训练过程中,损失函数的监控是判断模型效果的重要环节。为了更好地展示多个损失函数的变化趋势,我们可以使用Python中的Matplotlib库绘制图像。接下来,我们将为你提供一个详细的步骤指南,帮助你掌握这个技能。
## 整体流程
下面的表格展示了绘制多个损失函数图像的整体流程:
| 步骤编号 | 步骤内容 |
# 使用Python绘制CNN的损失函数曲线
## 引言
欢迎来到Python开发者的世界!在本篇文章中,我将教会你如何使用Python绘制卷积神经网络(CNN)的损失函数曲线。作为一名经验丰富的开发者,我将带你逐步完成这个任务。
## 整体流程
接下来,我将按照以下流程为你解释整个实现的步骤。请参考下表:
```mermaid
erDiagram
Developer -->> Ne
目录均方损失 绝对值损失函数 huber's robust Loss损失函数 是用来衡量预测值和真实值之间的区别。三个常用损失函数均方损失 绿色的线是 似然函数 (1的-l次方)。蓝色橙色如下图所示: 绝对值损失函数
这是一篇根据我个人需要的复习笔记 本来想一篇写下的结果发现太多了自己找起来都好累 干脆分成两半 上半部分包括:Decision Tree/Random Forest/Preprocessing and Feature Engineering/PCA/Logistic Regression/Kmeans. 下半部分从SVM开始 还在整理中。七、SVM非常强(强学习器,线性分类非线性分类都能做、二分类
目录1、什么是损失函数2、为什么使用损失函数3、损失函数3.1 基于距离度量的损失函数3.1.1 L1_Loss3.1.2 L2_Loss3.1.3 Smooth L1损失函数![在这里插入图片描述](https://s2.51cto.com/images/blog/202311/24172308_65606b7cb262b33158.png?x-oss-process=image/waterm
解决的问题:消除正负样本比例不平衡(One-Stage算法需要产生超大量的预选框,模型被大量负样本所主导,Focal Loss对此种情况卓有成效。),并且挖掘难负样本(难负样本即为一些很难区分是正样本还是负样本的负样本。其对立的就是一些简单的负样本,很容易区分出来是负样本,其前向传播的loss很小,模型很容易认出,因此在模型后期这些大量的简单样本会浪费大量的时间。)Focal loss是在交叉熵损
转载
2023-08-30 20:23:46
170阅读
前言 本文介绍了一系列可视化方法探索了神经损失函数的结构,以及loss landscape对泛化的影响,提出了一种基于 "Filter Normalization" 的简单可视化方法。当使用这种归一化时,最小化的锐度与泛化误差有很高的相关性,这种展示的可视化结果非常清晰。 作者丨CV开发者都爱看的 本文目录1 神经网络损失函数分布可视化神器 (来自马里兰大学) 1 Loss l
Generative Adversarial Nets 上周周报已经写了这篇论文,本周相对GAN网络的LOSS进行进一步的学习和研究。GAN网络: 条件:G依照真实图像生成大量的类似图像,D是辨别输入的图像是真实图像还是G生成的虚假图像。 原理:G和D是互相促进的。G的目的是产生的图像让D感到模糊不知道该分成realistic(看起来像是现实的)还是fake(看起来是假的),D的目的是将reali
# 用Python画多个损失函数图像
在机器学习和深度学习中,损失函数是评估模型预测值与实际值之间差异的指标。不同的损失函数适用于不同类型的问题,例如分类、回归等。在训练模型时,我们通常会关注损失函数的变化情况,以便了解模型的训练效果。
本文将介绍如何使用Python绘制多个损失函数的图像,帮助我们更直观地观察模型训练过程中损失函数的变化。
## 实际问题
假设我们正在构建一个分类模型,需