一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类,常用的分类SVM,LR,ANN等,对不同场景使用合适的分类,上面有朋友提到LR,当然LR比较简单而且速度...
SVM
原创 2021-06-10 18:21:49
445阅读
1点赞
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类,常用的分类SVM,LR,ANN等,对不同场景使用合适的分类,上面有朋友提到LR,当然LR比较简单而且速度...
原创 2022-03-02 09:26:54
284阅读
这篇是我暂时学的教程里的所有东西了,我也都加上了我的理解。但SVM是门学问,还要继续学的更深一点    SVM分类里面的东西好多呀,碾压前两个。怪不得称之为深度学习出现之前表现最好的算法。   今天学到的也应该只是冰山一角,懂了SVM的一些原理。还得继续深入学习理解呢。   一些关键词:&nb
转载 2023-11-28 21:16:52
7阅读
感知机 要理解svm,首先要先讲一下感知机(Perceptron),感知机是线性分类,他的目标就是通过寻找超平面实现对样本的分类;对于二维世界,就是找到一条线,三维世界就是找到一个面,多维世界就是要找到一个线性表达式,或者说线性方程: f(x) = ΣθiXi 表达式为0,就是超平面,用来做分界线
转载 2019-12-17 10:31:00
353阅读
2评论
快乐虾http://blog.csdn.net/lights_joy/欢迎转载,但请保留作者信息在opencv中支持SVM分类。本文尝试在python中调用它。和前面的贝叶斯分类一样,SVM也遵循先训练再使用的方式。我们直接在贝叶斯分类的測试代码上做简单改动。完毕两类数据点的分类。首先也是先创
转载 2017-04-25 15:42:00
531阅读
2评论
完整代码及其数据,请移步小编的GitHub  传送门:请点击我  如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言  整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思路混乱。所以我对S
利用sklearn执行SVM分类时速度很慢,采用了多进程机制。 一般多进程用于独立文件操作,各进程之间最好不通信。但此处,单幅影像SVM分类就很慢,只能添加多进程,由于不同进程之间不能共用一个变量(即使共用一个变量,还需要添加变量锁),故将单幅影像分为小幅,每小幅对应一个进程,每个进程对该小幅数据分 ...
转载 2021-11-03 21:53:00
413阅读
2评论
支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCV中SVM分类流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类参数注意:此处主要涉及到SVM分类相关参数设置。下面是自己对SVM分类相关参数总结。 参数介绍 degree:内核函数
想问一下各位大佬,在对数据集做svm分类时在这个部分一直报这个错误是因为什么呀
原创 2023-06-21 20:37:19
170阅读
1评论
这是我自己实现的SVM分类的Github代码,有需要自取。这是MATLAB版本的实现,以后会更新python版本的实现https://github.com/yingdajun/SVM-
原创 2021-09-08 10:15:56
2101阅读
线性分类:    首先给出一个非常非常简单的分类问题(线性可分),我们要用一条直线,将下图中黑色的点和白色的点分开,很显然,图上的这条直线就是我们要求的直线之一(可以有无数条这样的直线)    假如说,我们令黑色的点 = -1, 白色的点 =  +1,直线f(x) = w.x + b,这儿的x、w是向量,其实写成这种
SVM的理论知识见 SVM的一些总结与认识 --入门级 之前一直以为,用SVM做多分类,不就是用多个SVM分类么,请形状类似于一个二叉树,如下: 即,将所有样本当作输入,其中在训练第一个分类SVM_1的时候,其正样本为属于类别1的样本,其负样本为剩余的其他所有样本,这就称为 一对其余法,这样做虽然训练的时间从道理上来讲是相对较快的,但是它会带来一系列的问题: 1. 有可能有一个样本在
原理SVM被提出于1964年,在二十世纪90年代后得到快速发展并衍生出一系列改进和扩展算法,在人像识别、文本分类等模式识别(pattern recognition)问题中有得到应用。支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning) 方式对数据进行二元分类的广义线性分类(generalized linear classi
import numpy as np from sklearn import svm X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) clt = svm.SVC(probability = True) clt.fit(X, y) print clt.predict([[-0.8, -...
原创 2022-05-19 21:25:27
677阅读
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom
原创 2022-10-13 09:42:01
190阅读
本文利用SVM对UCI的IRIS数据进行了分类预测。实验环境是Pycharm python3。实验中出现的调试问题见最后。1.获取数据首先是数据集,采用UCI的鸢尾花数据集编辑我们点击Data Folder,显示如下编辑这个iris.data就是我们需要的数据了。点击进去,会在网页中显示数据。数据长这个样子。编辑我们将数据复制下来,保存成一个txt文件。2.编写代码在有了数据之后我们就可以开始我们
基于SMO算法的SVM分类--python实现第一部分 Python代码第二部分 1000条二维数据测试 完整代码及数据见:https://github.com/ledetest/SMO 第一部分 Python代码数据格式与libsvm官网数据一致 数据格式: [label] [index]:[value] … 运行参数说明:train_datafile_name:训练数据路径 Test_d
支持向量机SVM是从线性可分情况下的最优分类面提出的。所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小。推广到高维空间,最优分类线就成为最优分类面。 支持向...
qt
原创 2021-07-16 15:02:32
616阅读
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘chinese’:[95,69,91,52,60,80,78,81,96,82],‘rank’:[0...
原创 2021-06-10 17:30:13
1074阅读
输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。import pandas as pddf=pd.DataFrame({‘math’:[98,78,54,89,24,60,98,44,96,90],‘english’:[92,56,90,57,46,75,76,87,91,88],‘
原创 2022-03-01 10:24:46
2430阅读
  • 1
  • 2
  • 3
  • 4
  • 5