一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类器,常用的分类器有SVM,LR,ANN等,对不同场景使用合适的分类器,上面有朋友提到LR,当然LR比较简单而且速度...
原创
2021-06-10 18:21:49
445阅读
点赞
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类器,常用的分类器有SVM,LR,ANN等,对不同场景使用合适的分类器,上面有朋友提到LR,当然LR比较简单而且速度...
原创
2022-03-02 09:26:54
284阅读
这篇是我暂时学的教程里的所有东西了,我也都加上了我的理解。但SVM是门学问,还要继续学的更深一点
SVM分类器里面的东西好多呀,碾压前两个。怪不得称之为深度学习出现之前表现最好的算法。 今天学到的也应该只是冰山一角,懂了SVM的一些原理。还得继续深入学习理解呢。 一些关键词:&nb
转载
2023-11-28 21:16:52
7阅读
首先来介绍一下什么是SVM,Support Vector Machine,集支持向量机,这个机器可以得出两个类别中的最大边界,我把它理解为公平超平面,意思是对于每个类的边界距离都是相对来说比较大的(这样做的目的是将类别划分的更准确),之所以称之为公平超平面,是因为在偏向于某一类时就不符合我们SVM分类的宗旨了。 以一个平面坐标系为例,在这个平面坐标系中含有多种类别数据,我们先选定其中一种类别,然后
转载
2023-10-16 11:44:21
224阅读
感知机 要理解svm,首先要先讲一下感知机(Perceptron),感知机是线性分类器,他的目标就是通过寻找超平面实现对样本的分类;对于二维世界,就是找到一条线,三维世界就是找到一个面,多维世界就是要找到一个线性表达式,或者说线性方程: f(x) = ΣθiXi 表达式为0,就是超平面,用来做分界线
转载
2019-12-17 10:31:00
353阅读
2评论
快乐虾http://blog.csdn.net/lights_joy/欢迎转载,但请保留作者信息在opencv中支持SVM分类器。本文尝试在python中调用它。和前面的贝叶斯分类器一样,SVM也遵循先训练再使用的方式。我们直接在贝叶斯分类器的測试代码上做简单改动。完毕两类数据点的分类。首先也是先创
转载
2017-04-25 15:42:00
531阅读
2评论
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思路混乱。所以我对S
转载
2023-07-12 22:04:30
166阅读
一、神经网络-支持向量机
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 2 算法部分
二、海
原创
2021-07-05 22:28:44
571阅读
一、神经网络-支持向量机
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 2 算法部分
二、灰
原创
2021-07-05 22:40:12
833阅读
一、神经网络-支持向量机
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 2 算法部分
二、灰狼算法
灰狼算法
1 前言:
灰狼优化算法(Grey
原创
2021-07-07 16:04:31
639阅读
一、神经网络-支持向量机
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 2 算法部分
二、海鸥算法
海鸥算法主要模拟了海鸥的迁徙行为和攻击行为
原创
2021-07-07 16:05:38
479阅读
SVM(Support Vector Machine,支持向量机),是一种二类分类模型,其基本模型定义为特征空间上的即那个最大的线性分类器,器学习策略是间隔最大化,最终可转化为一个凸二次规划问题的解决。(线性支持向量机、非线性支持向量机)。 一.线性SVM SVM的主要思想是建立一个超平面作为决策曲面,是的正例和反例之间的隔离边缘被最大化。对于二维线性可分情况,令H为把两类训练样本没有错误地分
转载
2024-04-16 10:22:27
87阅读
利用sklearn执行SVM分类时速度很慢,采用了多进程机制。 一般多进程用于独立文件操作,各进程之间最好不通信。但此处,单幅影像SVM分类就很慢,只能添加多进程,由于不同进程之间不能共用一个变量(即使共用一个变量,还需要添加变量锁),故将单幅影像分为小幅,每小幅对应一个进程,每个进程对该小幅数据分 ...
转载
2021-11-03 21:53:00
413阅读
2评论
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ...
转载
2021-07-25 18:47:00
263阅读
2评论
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ...
转载
2021-07-25 18:48:00
199阅读
2评论
一、神经网络-支持向量机支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间
原创
2021-07-13 09:57:48
311阅读
一、神经网络-支持向量机支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间
原创
2021-07-13 09:58:28
749阅读
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ...
转载
2021-07-25 18:48:00
1316阅读
2评论
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ...
转载
2021-07-25 18:47:00
298阅读
点赞
2评论
一、神经网络-支持向量机 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 1 数学部分 1.1 二维空间 ...
转载
2021-07-25 18:49:00
158阅读
2评论