opencv3.0和2.4的SVM接口有不同,基本可以按照以下的格式来执行: ml::SVM::Params params;
params.svmType = ml::SVM::C_SVC;
params.kernelType = ml::SVM::POLY;
params.gamma = 3;
Ptr<ml::SVM> svm = ml::SVM::create(params);
转载
2024-07-26 16:40:13
249阅读
SVM的理论知识见 SVM的一些总结与认识 --入门级 之前一直以为,用SVM做多分类,不就是用多个SVM分类么,请形状类似于一个二叉树,如下: 即,将所有样本当作输入,其中在训练第一个分类器SVM_1的时候,其正样本为属于类别1的样本,其负样本为剩余的其他所有样本,这就称为 一对其余法,这样做虽然训练的时间从道理上来讲是相对较快的,但是它会带来一系列的问题: 1. 有可能有一个样本在
先暂时把opencv3的具有参考价值的文章放一下: 1、主要参考这个文章,但是他的是opencv2
原创
2021-07-29 14:05:41
434阅读
支持向量机(SVM)中最核心的是什么?个人理解就是前4个字——“支持向量”,一旦在两类或多累样本集中定位到某些特定的点作为支持向量,就可以依据这些支持向量计算出来分类超平面,再依据超平面对类别进行归类划分就是水到渠成的事了。有必要回顾一下什么是支持向量机中的支持向量。上图中需要对红色和蓝色的两类训练样本进行区分,实现绿线是决策面(超平面),最靠近决策面的2个实心红色样本和1个实心蓝色样本分别是两类
转载
2016-11-02 21:55:00
379阅读
2评论
上篇博客写了如何利用svm训练自己的模型,用于识别数字,这片博客就是加载模型,然后测试模型到底怎样,正确率高不高。 识别的结果就在这句话中,这句代码的意思是将检测的图片的标签返回回来,结果保存在response中,可以对response进行操作检测自己的模型准确率 int response = (int)svm->predict(p);#include <stdio.h...
原创
2021-07-29 11:41:29
1202阅读
点击蓝字关注我们最近也是在接触机器学习,通过做了几个MLNET的例子对机器学习有了一点了解,OpenCV中也
转载
2022-11-09 13:35:48
225阅读
前言:本文大水文一篇,大神请绕道。在正文之前,首先假设读者都已经了解SVM(即支持向量机)模型。 1. introduction libsvm是台湾大学林智仁(Chih-Jen Lin)教授于2001年开发的一套支持向量机的工具包,可以很方便地对数据进行分类或者回归分析。使用时,只需要把训练数据按照它的格式打包,然后直接喂进去训练即可。我这里的数据是保存在mat文件的,数据怎么导入这里略去不说(
转载
2024-03-27 05:35:12
81阅读
OpenCV 3.3中给出了支持向量机(Support Vector Machines)的实现,即cv::ml::SVM类,
此类的声明在include/opencv2/ml.hpp文件中,实现在modules/ml/src/svm.cpp文件中,它既支持两分类,也支持多分类,还支持回归等,
OpenCV中SVM的实现源自libsvm库。其中:
(1)、cv::ml::SVM类:继承自cv::ml
转载
2024-04-16 08:29:48
29阅读
这一次主要是实践部分.首先还是贴出源码.#include<opencv2\opencv.hpp>
#include <vector>
#include<iostream>
using namespace std;
using namespace cv;
#define n 8 //n个训练样本
int main()
{
//【1】 设置
转载
2024-04-16 10:31:11
63阅读
Opencv SVM 的使用方法:
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/ml/ml.hpp>
usingnamespace cv;
int main()
{
// Data for visual represent
初始化数据 int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); 设置训练数据 float labels[4] = {1.0, -1.0, -1.0, -1.0}; Mat labelsMat(4, 1, CV_32FC1, labels
原创
2014-03-28 13:39:00
575阅读
这个是一个windows上使用的利用Opencv里面svm算法进行多分类的图像分类模型训练,训练的模型支持C++,C#,python
原创
2024-10-23 15:26:47
0阅读
文章目录前言一、SVM1.1 SVM 使用类型1.2 核函数(1) 线性核(LINEAR )(2) 多项式核(3) RBF 高斯核函数(4) SIGMOID核函数(5) POLY核函数1.3 参数1.3.1 与核函数相关的参数如下1.3.2 与SVM类型选择相关的参数设置1.3.3 训练参数相关二、SVM分类问题步骤1.数据准备2.SVM模型搭建总结 前言本文主要以使用svm做图像分类为主要任务
转载
2023-08-07 19:00:31
78阅读
第一次尝试用openCV-python进行了人脸训练和人脸识别,主要参考下面的文章:稍有区别,区别在于:1. 在jm文件夹中放置训练图片命名格式为:人脸唯一编号.人脸姓名.图片编号,如图所示。这样第4步人脸识别的时候就能根据识别人脸的编号确定对应人名。2. 摄像头人脸采集像上面拍照处理照片比较繁琐,特别是需要大量照片训练时,可以直接用摄像头采集人脸照片。代码如下:# -*- coding: utf
转载
2024-06-26 11:15:37
39阅读
OpenCV最简单的环境配置以及读图显示视觉软件简介** 计算机视觉是在图像处理的基础上发展起来的新兴学科. OpenCV 是一个开源的计算机视觉库,是英特尔公司资助的两大图像处理利器之一。它为图像处理、 模式识别、三维重建、物体跟踪、机器学习和线性代数提供了各种各样的算法。 当然除了OpenCV之外还有一些优秀的机器视觉开发软件包,比如大家熟悉的Matlab、Halcon、Vision Pro以
转载
2024-05-03 17:08:25
24阅读
#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include <ml.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace cv;
u
转载
2016-04-17 19:46:00
185阅读
2评论
一.环境QT5.14OpenCv 4.2.0训练器使用的是OpenCV-3.4.1-x64版本的opencv_createsamples.exe和opencv_traincascade.exe文件。 高版本去除了这两个文件,有些低版本使用的时候会出现”应用程序无法正常启动(0xc000007b)。“的错误。(我之前使用OpenCv-3.3.1的时候就出现过) 下载链接:https://github
转载
2024-04-10 19:02:27
126阅读
学更好的别人,做更好的自己。——《微卡智享》本文长度为1974字,预计阅读5分钟前言很早就想学习深度学习了,因为平时都是自学,业余时间也有限,看过几个pyTorch的入门,都是一些碎片化的东西,始终串不起来。最近也是正好赶的疫情,出差少了,也是在B站看pyTorch视频时有评论说刘二大人的《pyTorch深度学习实践》讲的好,整个教程看下来后,确实是深入浅出,感觉就是宛然打通自己任督二脉,算是入门
转载
2024-05-13 09:32:50
62阅读
Opencv+traincasade训练器训练1. 前期准备opencv3.4.1 +VS2018存放正样本和负样本的文件夹生成训练的文件2. 准备样本2.1 准备正样本正样本就是你想要识别的物体,可根据情况选择样本的多少(实际上越多越好),样本之间不要重 复,差异性越大越好(比如人脸识别,就拍很多张正脸,侧脸之类的)。尺寸看情况选择,但是必须归一化,即统一尺寸。本文中选择的尺寸为128X96,越
转载
2024-03-16 01:13:24
64阅读