0.背景在线性代数领域,SVD分解常用的场景是对长方形矩阵的分解;而在机器学习领域,SVD可用于降维处理;但是这么说实在是太抽象了,我们从一个例子出发来重新看一下SVD到底是一个啥玩意儿叭1.特征值与特征向量其中是一个n*n的矩阵,是的一个特征值,是一个属于特征值的n*1的特征向量。2.特征值分解根据上式,可以推出:可知,我们可以用特征值+特征向量来替代原矩阵。3.奇异值与奇异值分解(SVD)上面
引言前面我们分享降维分析之PCA分析及实现,说PCA除了应用在数据降维上,还可用于特征分析。今天我们就来分享个新的特征分析的方法,叫做奇异值分解(Singular Value Decomposition,SVD)。SVD背后的数学原理我们如果在Google搜索引擎中输入SVD这个单词,会弹出好多图片,如下其中一幅: ;如果我们在Baidu搜索引擎中搜索SVD的话,百度百科的解释是这样的:SVD德拉
原创
2023-03-07 12:50:29
188阅读
计算方阵的特征值和右特征向量。参数: a : ( …,M,M)数组 将计算特征值和右特征向量的矩阵返回: w : ( …,M)数组 特征值,每个都根据其多样性重复。特征值不一定是有序的。结果数组将是复数类型,除非虚部为零,在这种情况下它将被转换为实数类型。当a 是实数时,得到的特征值将是实数(0虚部)或出现在共轭对中v : ( …,M,M)数组 归一化(单位“长度”)特征向量,使得列v[:,i
转载
2023-12-09 11:24:26
85阅读
调用Python中的skimage库提取图像HOG特征的示例代码如下,代码摘自 图像特征工程 HOG特征描述子介绍:from skimage.io import imread, imshow
from skimage.transform import resize
from skimage.feature import hog
from skimage import exposure
i
转载
2023-07-04 21:09:39
271阅读
如何选择特征根据是否发散及是否相关来选择方差选择法先计算各个特征的方差,根据阈值,选择方差大于阈值的特征方差过滤使用到的是VarianceThreshold类,该类有个参数threshold,该值为最小方差的阈值,然后使用fit_transform进行特征值过滤 相关系数法先计算各个特征对目标值的相关系数,选择更加相关的特征 递归特征消除法使用一个基模型来进行多轮训练,经过多轮
转载
2023-05-30 11:15:03
244阅读
挖掘之—基于ReliefF和K-means算法的医学应用实例
(DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一。因此分享一下很久以前做的一个小研究成果。也算是一个简单的数据挖掘处理的例子。1.数据挖掘与聚类分析概述数据挖掘一般由以下几个步骤: (l
转载
2023-08-24 11:09:16
136阅读
一.什么是特征选择(Feature Selection ) 特征选择也叫特征子集选择 ( FSS , Feature Subset Selection ) 。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化。 需要区分特征选择与特征提取。特征提取 ( Feature extraction )是指利用已有的特征计算出一个抽象程度更高的特征集,也指计算得到某
转载
2023-11-23 17:05:52
235阅读
一、算法 Relief算法最早由Kira提出. 基本内容:从训练集D中随机选择一个样本R, 然后从和R同类的样本中寻找k最近邻样本H,从和R不同类的样本中寻找k最近邻样本M, 最后按照公式更新特征权重. 算法:
转载
2024-02-02 18:24:30
435阅读
从这篇博文得到的启发 从N个数中取出任意个数,求和为指定值的解,二进制版本和通用版本常见的特征选择方法有Filter方法和Wrapper方法。Filter方法• 核心思想是利用某种评价准则给特征打分选择分数高的特征作为特征子集
• 特点:性能只依赖于评价准则的选取,时间复杂度低,速度很快;但是分类精度较低Wrapper方法• 在筛选特征的过程当中直接利用所选的特征来训练分类器,根据这个分类器在验
转载
2024-01-01 10:27:26
217阅读
1. SVD用于数据压缩 Am×n=Um×rΣr×r(Vn×r)T=∑σiuivTi1) 数学特征: a. r为矩阵的秩,转换坐标基底,表示矩阵A每行每列所用向量的最小维度 b. U和V称为左奇异矩阵和右奇异矩阵,都是 单位正交阵,每个奇异向量都是由矩阵A的行和列的 线性组合得到 c.
Σ是对角矩阵,每个值称为奇异值,表示奇异向量(U和V每列)对矩阵A的能量贡献,因此可以将某些较小的奇异
转载
2024-01-12 15:40:16
63阅读
特征选择特征选择是特征工程里的一个重要问题,其目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。并且常能听到“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”,由此可见其重要性。 特征选择有以下三种常见的方法: 导入数据:import pandas as pd
dat
转载
2023-08-30 09:05:41
777阅读
Sklearn的feature_selection模块中给出了其特征选择的方法,实际工作中选择特征的方式肯定不止这几种的,IV,GBDT等等都ok;一、移除低方差特征(Removing features with low variance) API函数:sklearn.feature_selection.VarianceThreshold(threshold=0.0) VarianceThre
在本文中,我们将回顾特性选择技术并回答为什么它很重要以及如何使用python实现它。本文还可以帮助你解答以下的面试问题:什么是特征选择?说出特性选择的一些好处你知道哪些特征选择技巧?区分单变量、双变量和多变量分析。我们能用PCA来进行特征选择吗?前向特征选择和后向特征选择的区别是什么? 什么是特征选择,为何重要特性选择是选择与ML模型更加一致、非冗余和更相关的基本特性的过程。在ML项目中
转载
2023-08-27 09:54:14
148阅读
特征选择就是从原始特征中选取一些最有效的特征来降低维度,,提高模型泛化能力减低过拟合的过程,主要目的是剔除掉无关特征和冗余特征,选出最优特征子集; 常见的特征选择方法可以分为3类:过滤式(filter)、包裹式(wrapper)、嵌入式(embedding)。1.过滤式filter: 通过方差选择法、相关系数法、卡方检验法、互信息法来对特征进行评分,设定阈值或者待选择的阈值的个数来选择; 1.1方
转载
2023-07-27 20:25:02
198阅读
机器学习笔记特征选择(来自周志华老师的机器学习)Relief与Relie-FRelief是为二分类问题设计的Relief是一种过滤式特征选择方法。(过滤式方法先对数据集进行特征选择,然后再训练学习器,特征选择过程与后续学习器无关.这相当于先用特征选择过程对初始特征进行"过滤",再用过滤后的特征来训练模型) Relief设计了一个"相关统计量"来度量特征的重要性.该统计量是一个向量,其每个分量分别对
一,介绍常见的特征选择方法有三类:过滤式、包裹式、嵌入式。(1)过滤式过滤式中最著名的方法为Relief。其思想是:现在同类中找到样本最相近的两点,称为“猜中近邻”;再从异类样本中寻找最近的两点,称为“猜错近邻”,然后用于计算某个属性的相关统计量:
转载
2024-01-25 19:03:11
73阅读
创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。 &n
转载
2024-07-31 18:12:55
47阅读
特征工程:特征选择,特征表达和特征预处理。1、特征选择 特征选择也被称为变量选择和属性选择,它能够自动地选择数据中目标问题最为相关的属性。是在模型构建时中选择相关特征子集的过程。 特征选择与降维不同。虽说这两种方法都是要减少数据集中的特征数量,但降维相当于对所有特征进行了重新组合,而特征选择仅仅是保留或丢弃某些特征,而不改变特征本身。 降维常见的方法有PCA,SVD,萨蒙映射等,
转载
2023-12-18 19:25:49
380阅读
一直想写一篇关于特征选择(Feature Selection)的博客。有两个原因:第一、特征选择对于传统机器学习任务是十分重要的;第二、自己在硕士期间的研究方向就是特征选择,对于学界前沿的特征选择方法是有那么一丢丢了解的。在有监督,无监督,半监督以及单标签,多标签各种场景下,也做过一些工作: 《Local-nearest-neighbors-based feature weighting for
转载
2024-07-31 12:14:21
161阅读
是新朋友吗?记得先点蓝字关注我哦~作者介绍知乎@王多鱼京东的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。一、GBDT算法原理Gradient Boosting Decision Tree(GBDT)是梯度提升决策树。GBDT模型所输出的结果是由其包含的若干棵决策树累加而成,每一棵决策树都是对之前决策树组合预测残差的拟合,是对之前模型结果的一种“修正”。梯度提升树既
转载
2023-10-04 20:58:19
198阅读