一、分区的概念分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。二、为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能。mapreduce框架的性能开支主要在
转载 2023-08-13 19:46:47
262阅读
本文基于Spark 2.1.0版本新手首先要明白几个配置:spark.default.parallelism:(默认的并发数)如果配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:1.本地模式(不会启动executor,由SparkSubmit进程生成指定数量的线程数来并发): spark-shell spark.default.parallelism = 1
转载 2023-11-07 09:35:05
56阅读
1、分区的介绍分区partition,RDD内部的数据集合在逻辑上和物理上被划分成多个小子集合,这样的每一个子集合我们将其称为分区,即是数据集的一个逻辑块。RDD只是数据集的抽象,分区内部并不会存储具体的数据。Partition 类内包含一个 index 成员,表示该分区在 RDD 内的编号,通过 RDD 编号 + 分区编号可以唯一确定该分区对应的块编号,利用底层数据存储层提供的接口,就能从存储介
转载 2023-08-01 17:25:11
277阅读
Spark从2014年诞生时的“星星之火”到如今的“燎原之势”,仅仅用了八年时间,其发展速度之快,以及受欢迎程度之高,由此可见一斑。现如今Spark已经得到了几乎所有大数据企业的认可,而这些企业也迅速将自己的产品与Spark进行了紧密地集成。所以,作为现在最热门的几大分布式大数据计算引擎之一,Spark几乎是大数据工程师的必修课,而RDD作为Spark框架的灵魂所在,也是我们所必须熟悉并掌握的,今
转载 2023-11-02 12:12:36
159阅读
一、RDD的概念RDD(Resilient Distributed Dataset),即弹性分布式数据集,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并且还能控制数据的分区。不同RDD之间可以通过转换操作形成依赖关系实现管道化,从而避免了中间结果的I/O操作,提高数据处理的速度和性能。一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可以分成多
转载 2023-10-20 06:50:14
215阅读
# 理解和实现 Spark RDD 默认分区Spark 中,RDD(弹性分布式数据集)是最基本的数据结构,它提供了一个不可变、并行的分布式数据抽象。默认情况下,当你创建 RDD 时,Spark 会根据集群和数据大小自行决定分区数量。然而,有时我们希望手动控制 RDD 的分区以优化性能和资源使用。 本文将详细介绍如何实现 Spark RDD 的默认分区,帮助新手开发者掌握这一基本技能。
原创 9月前
46阅读
## 实现Spark默认分区命令的步骤 使用Spark进行数据处理时,经常需要设置分区来优化计算性能。Spark默认分区是指在没有指定分区参数的情况下,Spark自动为数据集选择合适的默认分区数。本文将介绍如何实现Spark默认分区命令,帮助刚入行的开发者快速上手。 ### 步骤概览 下面的表格展示了实现Spark默认分区命令的步骤概览: | 步骤 | 描述 | | --- | --- |
原创 2024-01-29 10:51:49
26阅读
文章目录RDD的分区RDD分区器广播变量累加器topN RDD的分区spark.default.parallelism:(默认的并发数)= 2,当配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:本地模式spark-shell --master local[N] spark.default.parallelism = N spark-shell --master
RDD.getNumPartitions()方法可以获得一个RDD分区数量, 1、默认由文件读取的话,本地文件会进行shuffle,hdfs文件默认会按照dfs分片来设定。 2、计算生成后,默认会按照executor-number*executor-cores来分片,也就是spark默认按照总工作核数来对数据分片,而不是工作实例数。
目录3.4     RDD的分区3.5     RDD的依赖关系总结3.4     RDD的分区在分布式程序中,网络通信的开销是很大的,因此控制数据分布以获得最少的网络传输开销可以极大的提升整体性能;Spark程序可以通过控制RDD分区方式来减少通信开销。Spark中所有的RDD
目录spark分区一. Hash分区二. Ranger分区三. 自定义Partitioner案例spark分区 Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区Spark分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数。注意(1)只有Key-Value类型的RDD才有分区器的
转载 2024-05-19 07:53:10
80阅读
HDFS是什么:HDFS即Hadoop分布式文件系统(Hadoop Distributed Filesystem),以流式数据访问模式来存储超大文件,运行于商用硬件集群上,是管理网络中跨多台计算机存储的文件系统。HDFS不适合用在:要求低时间延迟数据访问的应用,存储大量的小文件,多用户写入,任意修改文件。HDFS数据块:HDFS上的文件被划分为块大小的多个分块,作为独立的存储单元,称为数据块,默认
一、分区个数规则spark.default.parallelism:(默认的并发数)= 2当配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:1、本地模式(不会启动executor,由SparkSubmit进程生成指定数量的线程数来并发):spark-shell spark.default.parallelism = 1 spark-shell --m
转载 2023-08-29 19:38:52
164阅读
查找质数    比如我们需要从2到2000000之间寻找所有的质数。我们很自然地会想到先找到所有的非质数,剩下的所有数字就是我们要找的质数。  我们首先遍历2到2000000之间的每个数,然后找到这些数的所有小于或等于2000000的倍数,在计算的结果中可能会有许多重复的数据(比如6同时是2和3的倍数)但是这并没有啥影响。我们在Spark shell中计算:Welco
转载 2024-06-21 16:13:25
18阅读
spark cache: 1,cache 方法不是被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用 2, cache 是调用的 persist() 默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中 3,cache 默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在o
转载 2023-09-03 11:35:33
163阅读
RDD创建1 内存中创建RDD1.1 创建方法//准备环境 val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD") val sc = new SparkContext(sparkConf) //将内存中集合的数据作为处理的数据源 val seq = Seq(1, 2, 3, 4) //并行,并行度取决于任务所能
转载 2023-10-10 15:06:01
203阅读
RDD 的 Shuffle 和分区分区的作用RDD 使用分区来分布式并行处理数据, 并且要做到尽量少的在不同的 Executor 之间使用网络交换数据, 所以当使用 RDD 读取数据的时候, 会尽量的在物理上靠近数据源, 比如说在读取 Cassandra 或者 HDFS 中数据的时候, 会尽量的保持 RDD 的分区和数据源的分区数, 分区模式等一一对应分区和 Shuffle 的关系分区的主要作用是
RDD分区在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。所以对RDD进行分区的目的就是减少网络传输的代价以提高系统的性能。RDD的特性在讲RDD分区之前,先说一下RDD的特性。RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,
转载 2023-09-17 17:22:58
127阅读
数据分区partitionBy分区在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。和单节点的程序需要为记录集合选择合适的数据结构一样,Spark 程序可以通过控制RDD 分区方式来减少通信开销。分区并不是对所有应用都有好处的——比如,如果给定RDD 只需要被扫描一次,我们完全没有必要对其预先进行分区处理。只有当数据集多次在诸如连接这种基于键的操作中使
一、分区的概念  分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。二、为什么要进行分区  数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能。mapreduce框架的性能开支
转载 2024-02-17 13:12:33
119阅读
  • 1
  • 2
  • 3
  • 4
  • 5