Spark专题的第二篇,本来想写Spark的Shuffle是如何实现的,查了一些资料,还是不太明白的。所以,从定义和缘由开始缕一缕:什么是大数据处理的Shuffle?为什么大数据集群处理需要进行Shuffle?Hadoop和Spark的Shuffle分别是如何实现的?相对与Hadoop的Shuffle,Spark的Shuffle有什么优点?  第一个问题,什么是大数据处理的Shuffle?无论
转载 2023-10-12 11:44:12
97阅读
1 '; 28 $res = implode(',', w_shuffle($arr)); 29 echo $res.''; 30 echo implode(',', $arr).''; 31 shuffle($arr); 32 $res = implode(',',$arr); 33 echo $res.''; 34 echo implode(',', $arr).''; 1 1,2,3...
php
转载 2016-08-23 00:40:00
112阅读
2评论
Shuffle 工作流程 Shuffle 描述着数据从MapTask输出到ReduceTask输入的这段过程。shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。因为在分布式情况下,ReduceTask需要跨节点去拉取其它节点上的MapTask结果。这一过程将会产生网络资源消耗
回忆一下,每个Stage的上边界,要么需要从外部存储读取数据,要么需要读取上一个Stage的输出;而下边界,要么是需要写入本地文件系统(需要Shuffle),以供childStage读取,要么是最后一个Stage,需要输出结果。这里的Stage,在运行时的时候就是可以以pipeline的方式运行的一组Task,除了最后一个Stage对应的是ResultTask,其余的Stage对应的都是Shuff
转载 2023-06-19 13:39:07
193阅读
Spark 大会上,所有的演讲嘉宾都认为 shuffle 是最影响性能的地方,但是又无可奈何。之前去百度面试 hadoop 的时候,也被问到了这个问题,直接回答了不知道。这篇文章主要是沿着下面几个问题来开展:1、shuffle 过程的划分?2、shuffle 的中间结果如何存储?3、shuffle 的数据如何拉取过来?Shuffle 过程的划分Spark 的操作模型是基于 RDD 的,当调用 RD
在使用 Spark 进行计算时,我们经常会碰到作业 (Job) Out Of Memory(OOM) 的情况,而且很大一部分情况是发生在 Shuffle 阶段。那么在 Spark Shuffle 中具体是哪些地方会使用比较多的内存而有可能导致 OOM 呢? 为此,本文将围绕以上问题梳理 Spark 内存管理和 Shuffle 过程中与内存使用相关的知识;然后,简要分析下在 Spark Shuffl
转载 2023-10-18 05:24:13
91阅读
一、Spark-Core(三)回顾1.1、Spark on yarn的运行方式二、Shuffle的剖析2.1、2.1、IDEA下使用repartition和coalesce对用户进行分组2.2、coalesce和repartition在生产上的使用2.3、reduceByKey和groupByKey的区别2.4、图解reduceByKey和groupByKey2.5、reduceByKey和gro
转载 3月前
3阅读
Spark Shuffle原理解析 一:到底什么是Shuffle?         Shuffle中文翻译为“洗牌”,需要Shuffle的关键性原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算。 二:Shuffle可能面临的问题?运行Task的时候才会产生Shuffle(S
转载 2023-06-02 14:18:45
107阅读
一.hashShuffle在早期的spark中,其shuffle的机制是hashShuffle。在hashShuffle的过程中,每一个shuffleMapTask都会为每一个reduceTask创建一个bucket缓存,shuffleMapTask会对处理后的数据进行partitioner操作(默认是hash partition,即对key进行hashcode再将其值与reduceTask数量进
转载 2023-06-19 13:36:05
151阅读
前言继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。数据倾斜调优调优概述有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的
5个以上参数的方法摘要 函数声明中参数超过5个,将导致程序逻辑过于复杂。 缺陷描述 方法函数应当尽量简洁,一个函数只处理一个功能,本规则检测函数的参数超过5个的情形。示例1 函数中包含参数过多。public class test { public String getUser(int a, int b, int c, int d, int e, int f){ ...
转载 2023-05-19 15:46:26
307阅读
本文整理自字节跳动基础架构的大数据开发工程师魏中佳在 ApacheCon Aisa 2022 「大数据」议题下的演讲,主要介绍 Cloud Shuffle Service(CSS) 在字节跳动 Spark 场景下的设计与实现。作者|字节跳动基础架构大数据开发工程师-魏中佳背景介绍在大数据场景下,数据 Shuffle 表示了不同分区数据交换的过程,Shuffle 的性能往往会成为作业甚至整个集群的性
MapReduce中Shuffle原理详解1、概述 1、MapReduce 中,map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的 一个流程,这个流程就叫 Shuffle; 2、Shuffle: 数据汇洗 就是将 maptask 输出的处理结果数据,分发给 reducetask。 2、主要流程 Shuffle 是 MR 处理流程中的一个过程,它的每一个处理
1. Shuffle相关当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。概念上shuffle就是一个沟通数据连接(map和reduce)的桥梁。每个ReduceTask从每个Map Task产生数的据中读取
转载 2017-01-04 23:10:13
834阅读
1点赞
在所有的 MapReduce 框架中, Shuffle 是连接 map 任务和 reduce 任务的桥梁ma
原创 2021-08-02 14:04:39
178阅读
Shuffle基本流程 spark shuffle从总体来讲分成两部分,shuffle write和shuffle reader,如下图所示,看到这里,就明白了为什么spark性能优化的时候建议宁可broadcast也不要shuffle,broadcast好歹还是内存操作,网络上大一点压力(每个节点
转载 2020-01-19 08:17:00
114阅读
Spark Shuffle 1. Shuffle相关 当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运...
转载 2014-11-08 11:18:00
133阅读
2评论
# Java Shuffle Shuffling is a technique used to randomize the order of elements in a collection or an array. In Java, the shuffle operation can be performed using the `Collections.shuffle()` method o
原创 2023-07-29 04:55:22
684阅读
在博文《深入理解Spark 2.1 Core (七):任务执行的原理与源码分析 》我们曾讲到过:Task有两个子类,一个是非最后的Stage的Task,ShuffleMapTask;一个是最后的Stage的Task,ResultTask。它们都覆盖了Task的runTask方法。我们来看一下ShuffleMapTask的runTask方法中的部分代码:var writer: ShuffleWrit
转载 3月前
13阅读
一、概要描述 在Child的main函数中通过TaskUmbilicalProtocol协议,从TaskTracker获得需要执行的Task,并调用Task的run方法来执行。在ReduceTask而Task的run方法会通过java反射机制构造Reducer,Reducer.Context,然后调用构造的Reducer的run方法执行reduce操作。不同于map任务,在执行reduce任务前
  • 1
  • 2
  • 3
  • 4
  • 5