一、分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。二、为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能。mapreduce框架的性能开支
转载
2024-02-17 13:12:33
119阅读
文章目录spark-submit 部署应用附加的参数:spark-env.sh 具体的属性配置信息配置资源分配参数调优案例分析自定义分区器检查点checkpointSpark共享变量 spark-submit 部署应用不论使用的是哪一种集群管理器,都可以使用 spark-submit 将你的应用提交到那种集群管理器上。 通过不同的配置选项,spark-submit 可以连接到相应的集群管理器上,
spark分区的使用
RDD是弹性分布式数据集,通常RDD很大,会被分成多个分区,保存在不同节点上。那么分区有什么好处呢?分区能减少节点之间的通信开销,正确的分区能大大加快程序的执行速度。我们看个例子首先我们要了解一个概念,分区并不等同于分块。分块是我们把全部数据切分成好多块来存储叫做分块。如上图b,产生的分块,每个分块都可能含有同样范围的数据。而分区,
转载
2023-07-18 11:07:03
94阅读
Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数注意:(1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD分区的值是None(2)每个RDD的分区ID范围:0~numPartitions-1,决定
转载
2024-05-31 01:32:14
31阅读
# Spark动态分区裁剪不起作用的原因与解决方案
Apache Spark 是一个强大的大数据处理框架,它提供了一种非常高效的数据处理方式。然而,在某些情况下,Spark 的动态分区裁剪特性可能不会按预期工作,这会导致性能问题。本文将探讨何为动态分区裁剪,它如何工作,当它未能生效时,可能的原因以及解决方案。
## 1. 理解动态分区裁剪
动态分区裁剪是 Spark SQL 的一项优化特性,
原创
2024-10-27 04:44:12
228阅读
一、分区个数规则spark.default.parallelism:(默认的并发数)= 2当配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:1、本地模式(不会启动executor,由SparkSubmit进程生成指定数量的线程数来并发):spark-shell spark.default.parallelism = 1
spark-shell --m
转载
2023-08-29 19:38:52
164阅读
最近因为手抖,在Spark中给自己挖了一个数据倾斜的坑。为了解决这个问题,顺便研究了下Spark分区器的原理,趁着周末加班总结一下~先说说数据倾斜数据倾斜是指Spark中的RDD在计算的时候,每个RDD内部的分区包含的数据不平均。比如一共有5个分区,其中一个占有了90%的数据,这就导致本来5个分区可以5个人一起并行干活,结果四个人不怎么干活,工作全都压到一个人身上了。遇到这种问题,网上有很多的解决
转载
2017-04-16 14:01:00
60阅读
2评论
查找质数 比如我们需要从2到2000000之间寻找所有的质数。我们很自然地会想到先找到所有的非质数,剩下的所有数字就是我们要找的质数。 我们首先遍历2到2000000之间的每个数,然后找到这些数的所有小于或等于2000000的倍数,在计算的结果中可能会有许多重复的数据(比如6同时是2和3的倍数)但是这并没有啥影响。我们在Spark shell中计算:Welco
转载
2024-06-21 16:13:25
18阅读
spark cache:
1,cache 方法不是被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用
2, cache 是调用的 persist() 默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中
3,cache 默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在o
转载
2023-09-03 11:35:33
163阅读
RDD创建1 内存中创建RDD1.1 创建方法//准备环境
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
val sc = new SparkContext(sparkConf)
//将内存中集合的数据作为处理的数据源
val seq = Seq(1, 2, 3, 4)
//并行,并行度取决于任务所能
转载
2023-10-10 15:06:01
203阅读
RDD 的 Shuffle 和分区分区的作用RDD 使用分区来分布式并行处理数据, 并且要做到尽量少的在不同的 Executor 之间使用网络交换数据, 所以当使用 RDD 读取数据的时候, 会尽量的在物理上靠近数据源, 比如说在读取 Cassandra 或者 HDFS 中数据的时候, 会尽量的保持 RDD 的分区和数据源的分区数, 分区模式等一一对应分区和 Shuffle 的关系分区的主要作用是
转载
2024-06-21 16:21:44
20阅读
RDD分区在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。所以对RDD进行分区的目的就是减少网络传输的代价以提高系统的性能。RDD的特性在讲RDD分区之前,先说一下RDD的特性。RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,
转载
2023-09-17 17:22:58
127阅读
数据分区partitionBy分区在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。和单节点的程序需要为记录集合选择合适的数据结构一样,Spark 程序可以通过控制RDD 分区方式来减少通信开销。分区并不是对所有应用都有好处的——比如,如果给定RDD 只需要被扫描一次,我们完全没有必要对其预先进行分区处理。只有当数据集多次在诸如连接这种基于键的操作中使
转载
2023-09-01 18:33:37
401阅读
Kafka 工作流程及文件存储机制Topic 与 partition物理层面:topic 是逻辑上的概念,而 partition 是物理上的概念每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该 log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己消费
转载
2024-08-06 21:02:03
57阅读
转载自:https://www.cnblogs.com/qingyunzong/p/8987065.html 一:分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区。 分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务tas
转载
2020-03-31 10:41:00
177阅读
2评论
一、RDD 的分区前面在学习 MapReduces 的时候就提到分区,在RDD中同样也存在分区的概念,本质上都是为了提高并行度,从而提高执行的效率,那在 Spark 中的分区该怎么设置呢?首先分区不是越多越好,太多意味着任务数太多,调度任务也会耗时从而导致总体耗时增多,分区数太少的话,会导致一些节点分配不到任务,而某个分区数据量又大导致数据倾斜问题。因此官方推荐的分区数是:partitionNum
转载
2023-08-31 09:39:22
522阅读
摘要本篇文章主要分析spark sql在加载jdbc数据时,比如通过jdbc方式加载MySQL数据时,分区数如何确定,以及每个分区加载的数据范围。通过本篇文章的分析,以后我们在用spark读取jdbc数据时,能够大致明白底层干了什么事情,以及避免一些坑。spark dataframe的jdbc接口/**
* Construct a `DataFrame` representing the d
转载
2023-10-26 14:17:32
115阅读
首先,我们回顾的知识点是RDD的五大特性:1,一系列的分区。2,一个函数作用于分区上。3,RDD之间有一系列的依赖。4,分区器。5,最佳位置。Spark属于链式计算,rdd之间有着依赖关系:窄依赖,宽依赖。RDD执行的时候会将计算链条分为很多task,rdd的task分为:ResultTask和ShuffleMapTask。1.Partitioner简介书归正传,RDD之间的依赖如果是宽依赖,那么
转载
2024-05-31 16:43:15
170阅读
8. 不一定非得每秒处理一次 由于Spark Streaming的原理是micro batch, 因此当batch积累到一定数量时再发放到集群中计算, 这样的数据吞吐量会更大些. 这需要在StreamingContext中设置Duration参数. 我们试着把Duration调成两秒, 这样Spark就会在接收Kafka的模块中积累了2秒的数据后, 在调
转载
2024-06-21 16:14:20
40阅读
spark目前支持两个分区器,分别是HashPartitioner和RangePartitioner.均继承自Partitioner,有共同方法- def numPartitions --分区器的分区数量
- def getPartition(key: Any): Int ---获取某一个key的分区号HashPartitionerSpark中非常重要的一个分区器,也是默认分区器,默认用于90%
转载
2024-03-03 20:22:35
32阅读