object JdbcDatasourceTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .appName("JdbcDatasourceTest") .master("local") .getOrCreate()
转载 2024-06-25 06:46:56
8阅读
 1. Spark与Scala的版本问题官网会给出Maven Repository上可以查到2. RDD(Resilent Distributed DataSet)一组Partition,每个分片都被一个计算任务处理,未指定的话默认是程序分配的CPU core的数目计算每个Paritition的函数每个Partition上的数据都有一个函数进行计算RDD之间的依赖关系Rdd每次转换会生成
转载 2023-07-30 15:45:52
132阅读
在处理 Spark 中的 RDD(弹性分布式数据集)数据时,如何有效地将数据从 MySQL 中删除是一个棘手且重要的问题。本文将详细记录解决这个问题的整个过程,包括背景、参数解析、调试步骤、性能调优、最佳实践和生态扩展等方面的深入分析。 ### 背景定位 随着数据量的增长,使用 Spark 处理 RDD 对业务的实时分析变得愈发重要。由于数据库中存储的数据在某些条件下需要被删除,这对性能和数
原创 7月前
22阅读
Spark在大数据处理上的优势,很大一部分来自数据处理速度的提升,这使得Spark在面对大规模实时计算的数据任务时,能够更快地完成大批量数据的处理,提升大数据处理的效率。而Spark获得的这些优势,核心关键在于RDD,今天我们为大家分享Spark高级教程的内容,Spark核心RDD概念解析。 所谓的RDD,全称是Resilient Distributed Datasets,翻译过来就是弹性分布式数
转载 2023-08-18 22:16:13
105阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、基本概念1.RDD的生成2.RDD的存储3.Dependency4.Transformation和Action4.1 Transformation操作可以分为如下几种类型:4.1.1 视RDD的元素为简单元素。4.1.2 视RDD的元素为Key-Value对:4.2 Action操作可以分为如下几种:5.shuffl
是什么     SparkSql 是Spark提供的 高级模块,用于处理结构化数据,开发人员可以使用HiveQL 和SQL语言 实现基于RDD的大数据分析,     底层基于RDD进行操作,是一种特殊的RDD,DataFrameRDD类型     1. 将SQL查询与Spark无缝混合,可以使用SQL或者Da
转载 2023-08-10 20:44:14
114阅读
窄依赖所谓窄依赖就是说子RDD中的每个分区(partition)只依赖于父RDD中有限个数的partition。在API中解释如下:  窄依赖在代码中有两种具体实现,一种是一对一的依赖:OneToOneDependency,从其getparent方法中不难看出,子RDD只依赖于父 RDD相同ID的Partition。另外一种是范围的依赖,RangeDependency,它仅仅被org.apache
1.1 什么是Spark SQL              Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用      它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有S
转载 2023-07-11 20:00:57
108阅读
一、Spark包括什么spark的核心是Spark Core,其中上面的Spark Sql对接的是Hive等结构化查询,Spark Streaming是对接的流式计算,后面的那两个也是主要用在科学任务中,但是他们的基础都是spark core,而Spark core的核心就是RDD操作,RDD的操作重要的就是算子,也就是说,掌握了算子基本上就掌握了spark的基础。二、RDD1、是什么?&nbsp
与许多专有的大数据处理平台不同,Spark建立在统一抽象的RDD之上,使得它可以以基本一致的方式应对不同的大数据处理场景,包括MapReduce,Streaming,SQL,Machine Learning以及Graph等。这即Matei Zaharia所谓的“设计一个通用的编程抽象(Unified Programming Abstraction)。这正是Spark这朵小火花让人着迷的地方。要理解
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创 2021-08-04 13:56:33
192阅读
RDD是“Resilient Distributed Dataset”的缩写,从全称就可以了解到RDD的一些典型特性。Resilient(弹性):RDD之间会形成有向无,数据库等。
原创 2024-04-30 14:59:51
316阅读
# 如何实现spark rdd批量插入mysql ## 简介 在大数据处理中,Spark是一个非常强大的分布式计算框架,而MySQL是一个常用的关系型数据库。本文将教你如何在Spark中批量插入数据到MySQL。 ## 流程 下面是实现“spark rdd批量插入mysql”的流程: | 步骤 | 内容 | | ----- | ----- | | 1 | 创建SparkSession | |
原创 2024-04-14 06:15:00
92阅读
1.从内存集合中创建RDD从集合中创建RDDSpark主要提供了两个方法:parallelize和makeRDDval sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark") val sparkContext = new SparkContext(sparkConf) val rdd1 = sparkCo
常用SparkRDD容易混淆的算子区别1.map与flatMap的区别# 初始化数据 val rdd1 = sc.parallelize(Array("hello world","i love you"))map# map算子 rdd1.map(_.split(" ")).collect # map算子结果输出 res0: Array[Array[String]] = Array(Array(h
转载 2023-09-28 12:39:08
312阅读
Spark最基本、最根本的数据抽象 RDD基于内存,提高了迭代式、交互式操作的性能 RDD是只读的,只能通过其他RDD批量操作来创建,提高容错性    另外RDD还具有位置感知性调度和可伸缩性 RDD只支持粗粒度转换,记录Lineage,用于恢复丢失的分区,从物理存储的数据计算出相应的RDD分区 &nbsp
1基本RDD1.1 针对各个元素的转化操作map()、filter()两个最常用的转化操作是map()和filter()。转化操作map()接收一个函数,把这个函数用于RDD中的每个元素,每个元素经函数的返回结果作为新RDD中对应元素的值。而转化操作filter()则接收一个函数,并将RDD中满足该函数的元素放入新RDD中返回。 例如,用map()对RDD中的所有数求平方:val input =
1. Tranformation val lines=sc.textFile(file:///usr/local/spark/mycode/rdd/word.txt) ### #1. map map(func) 将每个元素传递给函数 func 中,并将返回结果返回为一个新的数据集 scala> val data=Array(1,2,3,4,5) scala> val rd
转载 2023-11-09 16:22:41
60阅读
文章目录一、提出任务二、完成任务(一)、新建Maven项目(二)、添加相关日志依赖和构建插件(三)、创建日志属性文件(四)、创建分组排行榜榜单单例对象(五)本地运行程序,查看结果(六)交互式操作查看中间结果1、读取成绩文件得到RDD2、利用映射算子生成二元组构成的RDD3、按键分组得到新的二元组构成的RDD4、按值排序,取前三5、按指定格式输出结果 一、提出任务分组求TOPN是大数据领域常见的需
转载 2023-10-29 00:33:31
136阅读
一、学习Spark RDD RDDSpark中的核心数据模型,一个RDD代表着一个被分区(partition)的只读数据集。 RDD的生成只有两种途径: 一种是来自于内存集合或外部存储系统; 另一种是通过转换操作来自于其他RDD; 一般需要了解RDD的以下五个接口: partition 分区,一个RDD会有一个或者多个分区 dependencies() RDD的依赖关系 preferredLo
转载 2023-07-28 21:14:58
149阅读
  • 1
  • 2
  • 3
  • 4
  • 5