spark RDD目录spark RDD关于sparkRDD基本概念学习对于RDD的基本操作主从节点的启动spark的初始化RDD创建调用parallelize()方法并行化生成RDD使用外部存储中的数据集生成RDD注意事项正式的、RDD的基础操作WordCount的例子RDD转化操作transformationRDD行动操作actions总结基本编程步骤总结没有做的实践操作导入并使用jar包集成
转载 2023-12-11 10:33:02
57阅读
只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销。  一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可以分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。  RDD
只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销。  一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可以分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。  RDD
转载 2023-12-14 10:23:23
107阅读
# Spark拆分成多个RDD的介绍 Apache Spark 是一个快速、通用的大数据处理引擎,能够高效地处理大量数据。在Spark的核心概念中,弹性分布式数据集(RDD)是最基本的数据结构,它可以在集群上并行操作。当我们处理大规模数据时,有时需要将一个大的RDD拆分成多个RDD以便于更高效的操作和管理。本文将介绍如何在Spark中进行RDD拆分,并提供代码示例。 ## RDD的基本概念
原创 11月前
64阅读
Scala比较器两个特质Scala提供两个特质(trait)Ordered与Ordering用于比较。其中,Ordered混入(mix)Java的Comparable接口,而Ordering则混入Comparator接口。众所周知,在Java中实现Comparable接口的类,其对象具有了可比较性;实现comparator接口的类,则提供一个外部比较器,用于比较两个对象Ordered与Orderi
转载 11月前
48阅读
RDD 弹性分布式数据集(Resilient Distributed Dataset) 每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。 RDD 支 持 两 种 类 型 的 操 作: 转 化 操 作(transformation) 和 行 动 操 作(action) 转化操作会由一个 RDD 生成一个新的 RDD行动操作会对 RDD 计算出一个结
RDD 编程RDD基础spark对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称RDD),RDD是分布式元素的集合。在spark中,对数据的操作有创建RDD、转化RDD、action RDDRDD是一个不可变的分布式对象集合,每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上,rdd可以包含python、java、scala中的任意
转载 2023-12-24 12:07:53
61阅读
大数据-玩转数据-Spark-RDD(一)关于RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,一组分片(Partition),即数据集的基本组成单位,SparkRDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的,RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系,在部分分区数
一、RDD概念1.概念Resilient Distributed Datasets弹性分布式数据集,默认情况下:每一个block对应一个分区,一个分区会开启一个task来处理。(a)Resilient:可以存在给定不同数目的分区、数据缓存的时候可以缓存一部分数据也可以缓存全部数据 (b)Distributed:分区可以分布到不同的executor执行(也就是不同的worker/NM上执行) (c)
转载 2024-04-10 21:09:54
19阅读
 1. Spark与Scala的版本问题官网会给出Maven Repository上可以查到2. RDD(Resilent Distributed DataSet)一组Partition,每个分片都被一个计算任务处理,未指定的话默认是程序分配的CPU core的数目计算每个Paritition的函数每个Partition上的数据都有一个函数进行计算RDD之间的依赖关系Rdd每次转换会生成
转载 2023-07-30 15:45:52
132阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、基本概念1.RDD的生成2.RDD的存储3.Dependency4.Transformation和Action4.1 Transformation操作可以分为如下几种类型:4.1.1 视RDD的元素为简单元素。4.1.2 视RDD的元素为Key-Value对:4.2 Action操作可以分为如下几种:5.shuffl
是什么     SparkSql 是Spark提供的 高级模块,用于处理结构化数据,开发人员可以使用HiveQL 和SQL语言 实现基于RDD的大数据分析,     底层基于RDD进行操作,是一种特殊的RDD,DataFrameRDD类型     1. 将SQL查询与Spark无缝混合,可以使用SQL或者Da
转载 2023-08-10 20:44:14
114阅读
窄依赖所谓窄依赖就是说子RDD中的每个分区(partition)只依赖于父RDD中有限个数的partition。在API中解释如下:  窄依赖在代码中有两种具体实现,一种是一对一的依赖:OneToOneDependency,从其getparent方法中不难看出,子RDD只依赖于父 RDD相同ID的Partition。另外一种是范围的依赖,RangeDependency,它仅仅被org.apache
1.1 什么是Spark SQL              Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用      它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有S
转载 2023-07-11 20:00:57
108阅读
一、Spark包括什么spark的核心是Spark Core,其中上面的Spark Sql对接的是Hive等结构化查询,Spark Streaming是对接的流式计算,后面的那两个也是主要用在科学任务中,但是他们的基础都是spark core,而Spark core的核心就是RDD操作,RDD的操作重要的就是算子,也就是说,掌握了算子基本上就掌握了spark的基础。二、RDD1、是什么?&nbsp
与许多专有的大数据处理平台不同,Spark建立在统一抽象的RDD之上,使得它可以以基本一致的方式应对不同的大数据处理场景,包括MapReduce,Streaming,SQL,Machine Learning以及Graph等。这即Matei Zaharia所谓的“设计一个通用的编程抽象(Unified Programming Abstraction)。这正是Spark这朵小火花让人着迷的地方。要理解
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创 2022-03-15 14:06:34
172阅读
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
原创 2023-06-10 00:35:02
90阅读
原因1:优秀的数据模型和丰富的计算抽象Spark出现之前,已经有了非常成熟的计算系统MapReduce,并提供高级API(map/reduce),在集群中运行计算,提供容错,从而实现分布式计算。虽然MapReduce提供了数据访问和计算的抽象,但是数据的重用只是简单地将中间数据写入一个稳定的文件系统(比如HDFS),所以会产生数据复制备份、磁盘I/O和数据序列化,所以在多个计算中遇到需要重用中间结
转载 9月前
22阅读
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创 2021-08-04 13:56:33
192阅读
  • 1
  • 2
  • 3
  • 4
  • 5