# 用户画像的构建:基于Spark、Elasticsearch和HBase的解决方案
用户画像是指一种通过对用户数据进行分析所构建的关于用户特征的信息图谱。它不仅可以帮助企业更好地理解用户需求,还能提升产品的个性化推荐能力。随着大数据技术的发展,Spark、Elasticsearch和HBase等技术在用户画像构建中发挥了重要作用。在这篇文章中,我们将探讨如何结合这些技术实现用户画像的构建,并通
问题导读: 1.如何初始化sparkContext? 2.如何设置查询条件? 3.如何获得hbase查询结果Result? 由于spark提供的hbaseTest是scala版本,并没有提供java版。我将scala版本改为java版本,并根据数据做了些计算操作。 程序目的:查询出hbase满足条件的用户,统计各个等级个数。 代码如下,西面使用的hbase是0.94注释已经写详细: pack
转载
2023-08-13 23:28:31
73阅读
Mongodb和Hbase的对比1.Mongodb bson文档型数据库,整个数据都存在磁盘中,hbase是列式数据库,集群部署时每个familycolumn保存在单独的hdfs文件中。2.Mongodb 主键是“_id”,主键上面可以不建索引,记录插入的顺序和存放的顺序一样,hbase的主键就是row key,可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes)
转载
2023-07-28 13:37:41
57阅读
HBase概念:HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。它经常被描述为一种稀疏的,分布式的,持久花的,多维有序映射, 基于行键rowkey,列簇column family和时间戳timestemp.HBase生态环境HBase时Google Bigtable的开
转载
2023-07-21 15:47:56
47阅读
用spark读取hbase数据
0.我们有这样一个表,表名为Student1.在Hbase中创建一个表表明为student,列族为info2.插入数据我们这里采用put来插入数据格式如下 put ‘表命’,‘行键’,‘列族:列’,‘值’ 我们知道Hbase 四个键确定一个值,一般查询的时候我们需要提供 表
转载
2023-07-12 10:59:21
41阅读
1."es.http.timeout" -> "5m"
"es.http.retries" -> "50"这两个参数是控制http接口层面的超时及重试,覆盖读请求和写请求,默认值比较小,默认超时时间为1分钟,重试次数为3,建议调整为超时时间5分钟,重试次数50次。2. "es.nodes.wan.only" -> "true"
"es.nodes.discovery"
转载
2023-09-28 13:20:09
96阅读
HBaes介绍HBase是什么? 数据库 非关系型数据库(Not-Only-SQL) NoSQL 强依赖于HDFS(基于HDFS) 按照BigTable论文思想开发而来 面向列来存储 可以用来存储:“结构化”数据,以及“非结构化”数据 一个另新手程序员不爽的地方: HBase在查询数据的时候,只能全表扫描(最少要按照某
转载
2023-09-13 22:03:11
78阅读
一、项目概览二、项目整体架构流程 1:项目的数据来源可以是通过爬虫到互联网上采集的数据,也可以是企业数据库中的内部数据 2:根据数据的来源不同,使用不同的程序将数据入库到HBase,实现海量数据存储 3:针对HBase中的数据在ES中建立索引。注意:并不是把HBase中数据的完整内容全部在ES中建立索引,只需要将检索用到的那些字段在ES中建立索引即可。例如:HBase存储的原始数据有20个字段,在
转载
2023-08-18 16:30:29
188阅读
HBase 和 Hive 的差别是什么,各自适用在什么场景中?结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用。一、区别:Hbase: Hadoop database 的简称,也就是基于Hadoop数据库,是一种NoSQL数据库,主要适用于海量明细数据(十亿、百亿)的随机实时查询,如日志明细、交
转载
2023-08-12 22:36:48
110阅读
从昨天开始研究通过Spark向HBase中插入数据,开始在GitHub上面找了一段代码,但是调试起来不好用;于是到今天下午一直在研究这个代码,本来对于Python不太熟悉,对于PySpark更是不熟悉;而且还少一些包; 后来突然想到其实Spark还有Java版本的,PySpark和它都是Spark提
转载
2017-08-13 22:13:00
100阅读
2评论
先脑补一些相关知识:Hive和Hbase是两种基于Hadoop的不同技术--Hive是一种类SQL的引擎,并且运行MapReduce任务, Hbase是一种在Hadoop之上的NoSQL 的Key/value数据库。当然,这两种工具是可以同时使用的。就 像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实 时查询,数据也可以从Hive写到H
转载
2023-09-20 06:59:35
161阅读
文章目录Spark读HBase1. 使用newAPIHadoopRDD APISpark写HBase1. saveAsNewAPIHadoopFile API2. BulkLoadSpark应用程序依赖的jar包 Spark读HBase1. 使用newAPIHadoopRDD API代码实现:import org.apache.hadoop.hbase.client.Result
import
转载
2024-04-16 15:31:32
52阅读
一.前言MapReduce早已经对接了HBase,以HBase作为数据源,完成批量数据的读写。如今继MapReduce之后的Spark在大数据领域有着举足轻重的地位,无论跑批,流处理,甚至图计算等都有它的用武之地。Spark对接HBase成为不少用户的需求。二.SparkOnHBase1.可以解决的问题Spark和HBase无缝对接意味着我们不再需要关心安全和RDD与HBase交互的细节。更方便应
原创
2021-04-01 20:59:00
551阅读
MapReduce早已经对接了HBase,以HBase为数据源,完成批量数据的读写。继MapReduce之后Spark在大数据领域有着举足轻重的地位,无论跑批流处理,甚至图计算等都有它的用武之地。Spark对接HBase成为不少用户的需求。
转载
2021-07-27 16:30:09
242阅读
前言在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce。因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文。具体如下!事前准备在进行整合之前,首先确保Hive
转载
2023-07-13 16:50:10
45阅读
HiveSparkFlink语法优化 1. 列裁剪(只选择需要的列) 2. 行裁剪(只选取需要的行) 3. group by set hive.map.aggr = true set hive.groupby.mapaggr.checkinterval = 10000 set hive.groupby.skewindata = true 生成两个MR查询计划,部分聚合 -> 全局聚合 4.
转载
2023-08-30 13:40:36
63阅读
一. Hbase 的 region我们先简单介绍下 Hbase 的 架构和 region : 从物理集群的角度看,Hbase 集群中,由一个 Hmaster 管理多个 HRegionServer,其中每个 HRegionServer 都对应一台物理机器,一台 HRegionServer 服务器上又可以有多个 Hregion(以下简称 region)。要读取一个数据的时候,首先要先找到存
转载
2024-07-18 17:50:06
96阅读
读写方式其实个人最近访问hbase 都是通过shc df/sql 来访问的df的读写方式,足够覆盖90%的场景,但该方案有一个前提是,明确的知道hbase 的列族和列信息,新项目都会规范这一点,可以使用但有些历史包袱的项目,列族是明确的,但是列族里的列信息是不明确的,正好要做一个旧项目列的标准化每行数据列信息都不一样,部分多列,部分少列,必须读一条,解析一条,因此df之类的方案不适用也借此,整理下
转载
2023-07-12 10:54:22
116阅读
环境搭建及接口调用一、基础环境搭建1.节点基础网络配置2.配置 SSH 免密码登录3.安装 JDK、Scala4.配置完全分布式的 Hadoop5.配置完全分布式的 HBase6.配置 StandAlone 模式的 Spark7.安装和配置 MySQL8.Hbase操作二、存储接口设计及使用说明1.存储接口设计2.存储数据请求标准json格式3.存储接口调用4.存储返回状态码5.参数属性表、设备
转载
2023-07-05 13:06:28
82阅读
1.sparkspark是一个数据分析、计算引擎,本身不负责存储;可以对接多种数据源,包括:结构化、半结构化、非结构化的数据;其分析处理数据的方式有多种发,包括:sql、Java、Scala、python、R等;其中spark-sql用来对结构化数据分析处理,它将数据的计算任务通过SQL的形式转换成了RDD的计算。2.hive数据仓库,主要负责数据存储和管理,看作MapReduce计算引擎+HDF
转载
2023-09-01 10:59:11
125阅读