人工智能语言简介人工智能(AI)语言是一类适应于人工智能和知识工程领域的、具有符号处理和逻辑推理能力的计算机程序设计语言。能够用它来编写程序求解非数值计算、知识处理、推理、规划、决策等具有智能的各种复杂问题。典型的人工智能语言主要有LISP、Prolog、Smalltalk、C++等一般来说,人工智能语言应具备如下特点:具有符号处理能力(即非数值处理能力);适合于结构化程序设计,编程容易;具有递归
今天发现一个很不错的博客(http://www.RDataMining.com), 博主致力于研究R语言在数据挖掘方面的应用,正好近期很想系统的学习一下R语言和数据挖掘的整个流程,看了这个博客的内容,心里久久不能平静。决定从今天 开始,只要晚上能在11点之前把碗洗好,就花一个小时的时间学习博客上的内容,并把学习过程中记不住的信息记录下来,顺便把离英语四级的差距尽量缩小。下面列出了可用于数据挖掘的R
JavaScript是每个前端人员必须要掌握的知识点,在日常代码中,我们经常都会用到自执行函数表达式。今天要给大家分享的就是JavaScript中函数表达式和自执行函数表达式的用法。立即调用函数表达式 给函数体加大括号,在有变量声明的情形下,没有任何区别 但是,如果只是【自动执行】的情形下,就会不同 因为,一个匿名函数,不赋值或函数体不加小括号,是不能自动执行的//以下情形并无差别var coun
本文依靠EVT对任何连续分布的尾部建模。尾部建模,尤其是POT建模,对于许多金融和环境应用至关重要。
原创 2021-05-12 14:02:46
394阅读
本文依靠EVT对任何连续分布的尾部建模。尾部建模,尤其是POT建模,对于许多金融和环境应用至关重要。
原创 2021-05-12 14:02:45
1313阅读
R语言POT超阈值模型和极值理论分析
原创 2022-11-14 20:29:37
149阅读
随着基于过程的作物生长模型(Process-based Crop Growth Simulation Model)的发展,R语言在作物生长模型和数据分析、挖掘和可视化中发挥着越来越重要的作用。想要成为一名优秀的作物模型使用者与科研团队不可或缺的人才,除了掌握对作物模型相关知识之外,还要掌握模型的快速模拟和高效数据分析能力。Decision Support Systems for Agrotechn
本文依靠EVT对任何连续分布的尾部建模。尾部建模,尤其是POT建模,对于许多金融和环境应用至关重要POT模型其主要动机是为高洪水流量的概率模型提供实用工具。但是,EVT的优势在于结果不取决于要建模的过程。因此,人们可以使用POT来分析降水,洪水,金融时间序列,地震等。特征POT软件包可以执行单变量和双变量极值分析;一阶马尔可夫链也可以考虑。例如,目前使用18个 估算器拟合(单变量)GPD
原创 2022-11-21 10:36:27
628阅读
在经济学中,技术效率是指在既定的投入下产出可增加的能力或在既定的产出下投入可减少的能力。常用度量技术效率的方法是生产前沿分析方法。所谓生产前沿是指在一定的技术水平下,各种比例投入所对应的最大产出集合。而生产前沿通常用生产函数表示。前沿分析方法根据是否已知生产函数的具体的形式分为参数方法和非参数方法,前者以随机前沿分析(StochasticFrontierAnalysis,下文简称SFA)为代表,后
注:本博客旨在分享个人学习心得,有不规范之处请多多包涵! 目录Vector 向量Matrix 矩阵List 列表结束语 Vector 向量简单来说,R语言中的vector是一个包含许多元素的一维数据结构,类似Python里的列表。下面的命令可以构造一个简单的R语言向量:#c()函数意思为connect,它把括号里的内容整合成一个vector或list myVec1 <- c(1, 2, 3,
转载 2023-09-22 18:06:02
265阅读
POT工具是什么POT工具,全称:Post-training Optimization Tool,即训练后优化工具,主要功能是将YOLOv5 OpenVINO™ FP32 模型进行 INT8 量化,实现模型文件压缩,从而进一步提高模型推理性能。不同于 Quantization-aware Training 方法,POT使用起来更加简单,在改善 CPU 和硬件加速器延迟的同时缩减模型大小,且几乎不会
结合POT模型的洪水风险评估能够从有限的实测资料中获取更多的洪水风险信息,得到更贴近事实的风险评估结果,能为决策者提供更多的依据,从而使决策结果更加可靠实用。
原创 2021-05-12 14:03:25
309阅读
结合POT模型的洪水风险评估能够从有限的实测资料中获取更多的洪水风险信息,得到更贴近事实的风险评估结果,能为决策者提供更多的依据,从而使决策结果更加可靠实用。
原创 2021-05-12 14:03:26
290阅读
线性回归中模型选择的几个度量指标。1,R square统计量:度量回归模型的方差可解释部分。注意,只有往模型里面增加特征,就能够增加R square 统计量。2,F统计量:测试回归模型的整体显著性。如果F统计量较大,就可以拒绝所有系数为0的空假设。3,adjusted R square 统计量。对增加了R square 惩罚,当模型中特征较多时,做一个惩罚。4,Cp统计量:假定总共有K个特征。用其
转载 2023-08-17 07:32:52
0阅读
本文考虑一些ARCH(p)过程,例如ARCH(1)。其中有一个高斯白噪声 .> for(t in 3:n){ + sigma2\[t\]=w+a1\*epsilon\[t-1\]^2+a2\*epsilon\[t-2\]^2 + epsilon\[t\]=eta\[t\]*sqrt(sigma2\[t\]) + }(红线是条件方差过程)。> acf(epsilon,lag=5
模型评估:先算测试集误差接着用统计检验方法检验误差(泛化能力)到底成不成立。1、 经验误差如果在m个样本中有a个样本分类错误,则错误率为E=a/m,对应地精确度为1-a/m。实际预测输出与样本的真实值之间的差异成为“误差”。学习器在训练集在的误差成为“经验误差”。在新样本上的误差称为“泛化误差”。显然,泛化误差小的学习器是我们希望得到的。2、 评估方法测试集是用来测试学习器对新样本的判别能力,然后
广义线性模型扩展了线性模型的框架,它包含了非正态的因变量分析广义线性模型拟合形式:$$g(\mu_\lambda) = \beta_0 + \sum_{j=1}^m\beta_jX_j$$$g(\mu_\lambda)为连接函数$. 假设响应变量服从指数分布族中某个分布(不仅仅是正态分布),极大扩展了标准线性模型模型参数估计的推导依据是极大似然估计,而非最小二乘法.可以放松Y为正态分布的假设,改
转载 2023-06-14 16:46:53
379阅读
当您处理金融时间序列时,我们通常可以获得相对高频的观察结果。例如,每天进行观察是很常见的。事实上,现在可以获得每小时、分钟、秒甚至毫秒的观测值。相关视频使用的包有许多软件包可以使我们能够估计波动率模型。我们还将使用该 quantmod 软件包,因为它可以让我们轻松访问一些标准财务数据。数据上传在这里,我们将使用包提供的方便的数据检索功能(getSymbols) qua
2.1介绍       DEA模型又称投入导向模型CCR,它基于规模报酬不变前提。2.2步骤       假设我们要计算一组n个决策单元(DMU),它可能是企业、政府部门、学校或医院等,这n个DMU的技术效率记为DMUj。    &nbsp
Logistic构建临床预测模型系列主要以一篇基于logistic回归构建预测模型的文章为例,从整理数据到构建预测模型,再到内部验证模型,包括了整理数据、随机数据拆分、基线描述、差异性分析、绘制ROC曲线并计算AUC值、HL检验及绘制校准曲线、构建列线图模型并绘制DCA曲线,基本涵盖了Logistic构建预测模型的全过程,敬请期待!列线图Nomogram:通过适当的数学变换将回归模型中的回归系数转
  • 1
  • 2
  • 3
  • 4
  • 5