记录一下区域生长法的学习过程,区域生长法是基于区域分割方法,通过算法自动选取或者交互式选取种子点(即单个像素点),并规定所应用的谓词逻辑,将8邻接或4邻接并满足谓词逻辑的点进行合并,不断迭代,直至不满足谓词逻辑时,完成分割。最开始在实现这个功能的时候,在网上看了一些别人的代码,发现和自己理解的区域生长法有些出入,再此写下自己所理解的算法代码,仅代表个人意见。代码如下:/* * function:
引言本文章将带大家实现灾害监测中一种常用的图像分类方法,即区域生长算法。与前面介绍的几种图像分割方法不同,区域生长算法可直接对高于Uint8灰级的数据直接进行处理,所以保持了原数据的结构形式。另外,区域生长算法涉及到的参数较多,分类的结果与参数关联度较高,所以笔者也添加了阈值参量的调试程序。代码实现流程多波段TIF图像转jpg图像输入jpg图像,查询目标种子坐标区域生长算法最优阈值调
目录一、概述二、代码三、结果 一、概述  区域生长简单使用案例二、代码region_growing_segmentation.cpp#include <iostream> #include <vector> #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pc
转载 2023-07-01 12:14:58
337阅读
1.基于区域生长分割 算法的输出是一个聚类集合,每个聚类集合被认为是同一光滑表面的一部分。首先依据点的曲率值对点进行排序,区域生长算法是从曲率最小的点开始生长的,这个点就是初始种子点,初始种子点所在区域就是最平滑的区域,一般场景中平面区域较大,这样从最平滑的区域开始生长可减少分割区域的总数,提高效率。 算法流程: 2.代码#include <iostream> #include &l
区域生长法:通俗的讲就是利用初始种子点,通过邻域判断,获取更多的种子点,以达到生长的目的。有点像是核聚变的链式反应,一个点找到更多的种子点,然后新的种子点再找到更多的,最后生长结束,种子点库也就清空了。目前主要使用的是四领域和八领域:四邻域 (左) 和八邻域 (右) 的示意图:区域生长的流程图:   以下是部分代码(参考:结合python与遥感图像的区域生长算法实现
1、区域生长分割算法:区域生长分割算法的输出是一个聚类集合,每个聚类集合被认为是同一光滑表面的一部分。该算法思想:首先依据点的曲率值对点进行排序,之所以排序,是因为区域生长算法是从曲率最小的点开始生长的,这个点就是初始种子点,初始种子点所在的区域即为最平滑的区域,一般场景中平面区域较大,这样从最平滑的区域开始生长可减少分割区域的总数,提高效率。    算法的流程:设置一空的种子
0 引言本章的大多数分割算法都基于图像灰度值的两个基本性质之一:不连续性和相似性。第一类方法根据灰度的突变(如边缘)将图像分割为多个区域:首先寻找边缘线段,然后将这些线段连接为边界的方法来识别区域。第二类方法根据一组预定义的准则把一幅图像分割为多个区域:上一节根据像素性质(如灰度值或颜色)的分布进行阈值分割;本节将讨论直接寻找区域分割技术。1 区域生长区域生长是指根据预定义的准则,将像素或子区域
转载 2023-10-31 18:15:22
247阅读
    前几天看到一篇博客,题为《为什么你应该写博客》,学到了很多,同时也思考了很多,里面讲到“用博客的形式来记录下你有价值的思考,会带来很多好处,却没有任何明显的坏处”,一句话概括就是:书写是为了更好的思考,分享是为了让思考更有价值!        这是本人开通CSDN博客的第一天,刚开始着手学习计算机视觉这方面不久
一、感谢:向博主GlassySky0816致谢,参考其编辑书写的区域生长算法的python实现进行学习。 二、程序理解2.1程序分析import cv2 import numpy as np class Point(object): def __init__(self,x,y): self.x = x self.y = y def
转载 2024-05-14 14:29:18
303阅读
区域增长方法是根据同一物体区域内象素的相似性质来聚集象素点的方法,从初始区域(如小邻域或甚至于每个象素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象素的相似性度量可以包括平均灰度值、纹理、颜色等信息。但是,区域增长方法是一种迭代的方法,空间和时间开销都比较大。    区域生长是一
OpenCV与图像处理学习十——区域生长算法(含代码)一、区域生长算法概要二、区域生长算法原理三、代码应用 一、区域生长算法概要区域生长是一种串行区域分割的图像分割方法。区域生长是指从某个像素出发,按照一定的准则,逐步加入邻近像素,当满足一定的条件时,区域生长终止。区域生长的好坏决定于:初始点(种子点)的选取。生长准则。终止条件。区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标
# 区域生长算法分割图像 在数字图像处理领域,图像分割是一项重要的任务,它将图像划分为多个具有相似特征的区域,以便后续分析与处理。区域生长算法是其中一种常用的图像分割方法,其基本思想是从一个种子点开始,根据预定的相似性准则逐渐将相邻的点加入到当前区域中。本文将详细介绍区域生长算法,并提供Python代码示例。 ## 区域生长算法简介 区域生长算法主要包括以下几个步骤: 1. **选择种子点
原创 7月前
64阅读
# Python自带区域生长分割算法实施指南 在计算机视觉中,区域生长是一种基本的图像分割方法。通过将相似像素聚合为区域区域生长分割算法能有效地将图像分割成不同的区域。本文旨在帮助初学者理解并实现Python自带的区域生长分割算法。 ## 流程概述 在开始编程之前,我们需要明确分割算法的整体流程。以下是一个简要的步骤概述: | 步骤 | 目标
原创 8月前
226阅读
# Python区域生长算法分割图像教程 ## 1. 整体流程 首先,让我们来看一下整个Python区域生长算法分割图像的流程: | 步骤 | 描述 | | ---- | ---- | | 1 | 读取图像 | | 2 | 选择种子点 | | 3 | 初始化标记矩阵 | | 4 | 计算邻域像素 | | 5 | 确定生长准则 | | 6 | 生长算法 | | 7 | 显示结果 | ## 2
原创 2024-07-08 05:01:15
59阅读
目录1 算法介绍2 起点坐标种子点实现区域生长3 以灰度值作为种子点进行区域生长4 总结 1 算法介绍区域生长算法:将按照事先定义的生长准则讲一个像素或子区域逐步聚合成一个完整独立的区域的过程。对于图像上某个区域R,p为区域R上指定的一个像素点,称作种子点,按照规定的生长准则逐步将与种子点z一定邻域内符合相似性判据的像素合并成一个种子群以备下一阶段的生长,这样不断的进行循环生长直到满足生长停止条
这类方法按照图像的相似性准则划分不同的区域块。其中较为典型的方法优:种子区域生长法、分水岭法、区域分裂合并法。种子区域生长法:首先通过一组表示不同区域的种子像素开始,逐步合并与种子周围相似的像素,从而扩大区域,直到无法合并像素点或者区域为止。这个相似性度量可以采用平均灰度值、纹理、颜色等信息。该方法的关键就是如何选择初始的种子像素以及生长准则。区域分裂合并法:该方法首先要确定分裂合并的准则,然后对
转载 2024-01-01 20:30:20
385阅读
OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。现在,假设我们只需要从整个输入帧中检测到一个对象。因此,代替处理整个框架,如果可以在框架中定义一个子区域并将其视为要应用处理的新框架,该怎么办。我们要完成一下三个步骤:• 定义兴趣区• 在ROI中检测轮廓• 阈值检测轮廓轮廓线什么是ROI?简而言之,我
# 区域生长算法实现图像分割 ## 引言 图像分割是计算机视觉中的一个重要任务,其目的是将图像划分为多个区域或对象,以便于后续的分析和处理。区域生长算法是一种常用的图像分割技术,它通过从一个或多个种子点开始,逐步扩展区域分割图像。本文将介绍区域生长算法的基本原理及其在Python中的实现,并附带代码示例,帮助读者理解这一方法如何在实际应用中发挥作用。 ## 什么是区域生长算法? 区域生长
原创 7月前
103阅读
在比赛和项目中用opencv用多了,就会发现很多opencv没有实现的算法,其中一些还是十分常用,在教科书上经常出现的。作为一个弱鸡,有的简单的算法能够自己实现(比如本文所要讲的),有的写到一半就打出GG,有的直接就下不了手。。。作为一个非计算机科班的自动化系学生,想要成为一名视觉算法工程师,还是有很长的路要走啊~~ 区域生长 1.算法原
一、理论概念  区域生长是按照事先定义的生长准则将一个像素或者子区域逐步聚合成一个完整独立的连通区域过程。对于图像感兴趣目标区域R,z为区域R上事先发现的种子点,按照规定的生长准则逐步将与种子点z一定邻域内符合相似性判据的像素合并成一个种子群以备下一阶段的生长,这样不断的进行循环生长直到满足生长停止条件为止,从而完成了对感兴趣区域由一个种子点生长为一个独立连通区域的过程。其中相似性判据可以是像素灰
转载 2023-06-01 15:52:50
564阅读
  • 1
  • 2
  • 3
  • 4
  • 5