利用pytorch和交叉熵损失函数原理完成Iris分类器构造一 .基于对逻辑回归的数学基础从分类开始谈起 某个样本属于A类还是B类,从结果上讲就是值为0,还是值为1。但影响这个分类的是由一些因素决定的。我们从数学角度可以使用向量表示这些因素(这些因素就影响某个样本属于A类还是B类): 其中就是表示一个样本,样本具有n个影响分类的特征。如果考虑偏置项,则可以增加一个份量1。
# 自定义 PyTorch 交叉熵损失函数的实现
在深度学习中,交叉熵损失(Cross Entropy Loss)是一个非常重要的指标,常用于分类问题。虽然 PyTorch 已经内置了此损失函数,但作为一名初学者,了解如何从头实现它是非常有帮助的。本文将带你一步步学习如何在 PyTorch 中自定义交叉熵损失函数。
## 流程概述
我们可以将实现交叉熵损失函数的过程分为以下几个步骤:
|
PyTorch-05神经网络与全连接(Logistic Regression逻辑回归、交叉熵、交叉熵来优化一个多分类的问题、全连接层(MLP网络层)、激活函数与GPU加速、测试(validation performance)、Visdom可视化)一、Logistic Regression逻辑回归Logistic Regression现在完全被classification分类的相关概念给代替掉了。这
交叉熵损失函数是用来度量两个概率分布间的差异性,有关交叉熵损失函数的原理在这篇博客中讲解得很好。而本文主要对以下几种tensorflow中常用的交叉熵损失函数进行比较和总结:tf.losses.sigmoid_cross_entropytf.nn.sigmoid_cross_entropy_with_logitstf.losses.softmax_cross_entropytf.nn.softma
转载
2024-01-30 03:27:34
160阅读
3.5 损失函数 损失函数:也称模型的负反馈,是数据输入到模型当中,产生的结果与真实标签的评价指标,我们的模型可以按照损失函数的目标来做出改进。3.5.1 二分类交叉熵损失函数torch.nn.BCELoss(weight = None, size_average = None, reduce = None, reduction = 'mean')功能:计算二分类任务时的交叉熵(Cross En
转载
2023-10-03 15:05:42
802阅读
eep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它。虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好。而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但
转载
2023-08-22 12:08:30
149阅读
文章目录信息量熵KL散度(相对熵)torch.nn.KLDivLoss交叉熵交叉熵和MSE交叉熵和softmaxtorch.nn.CrossEntropyLossNLLLoss()NLLLoss 和 crossentropy loss 区别标签平滑pytorch实现知识蒸馏 语音识别系统中多数使用标签平滑的KL散度来计算loss,近期做了总结,系统学习了熵,交叉熵,KL散度的联系,以及标签平滑的
深度学习中交叉熵损失函数背景,公式推导详解首先,我们来看下交叉熵损失函数的表达式: 其中上面那个方程式是用于计算最后一层激活函数为softmax函数的交叉熵损失函数,下面这个是用于计算最后一层激活函数为sigmoid函数的交叉熵损失函数。 下面我将从为什么使用交叉熵函数、交叉熵函数数学推导、为什么对于sigmoid和softmax两个函数的交叉熵损失函数有差别这三个方面来讲讲我的理解:一、为什么使
转载
2023-12-10 16:34:31
116阅读
在做tensorflow对手写mnist字体识别中,用到了交叉熵来定义损失函数的方法,看着别人用这个,但是又不知道原理,心里特别的不踏实,就特地查了一些资料了解了一下:事先说明一下,我在做mnist数据集的时候,我做了数据的归一化操作,也就是说,我最终的到的是一个概率;而交叉熵的定义就是:衡量两个概率分布的差异性,而恰好这个函数有两个参数,一个是预测(logist)的,一个是我们输入的标签(lab
转载
2023-12-14 00:53:58
26阅读
编辑: ShuYini 校稿: ShuYini 时间: 2019-12-22 引言 在使用pytorch深度学习框架,计算损失函数的时候经常会遇到这么一个函数:
nn.CrossEntropyLoss()
该损失函数结合了nn.LogSoftmax()和nn.NLLLoss()两个函数。它在做分类(具体几类)训练的时候是非常有用的。在训练过程中
# 实现"pytorch交叉熵"的教程
## 步骤概览
首先,让我们来看一下整个实现"pytorch交叉熵"的流程:
| 步骤 | 操作 |
| --- | --- |
| 1 | 导入必要的库 |
| 2 | 创建模型 |
| 3 | 准备数据 |
| 4 | 定义损失函数 |
| 5 | 训练模型 |
| 6 | 测试模型 |
接下来,我们将逐步进行这些操作,为小白开发者详细讲解每一步需
原创
2024-03-25 06:45:51
62阅读
# 交叉熵与 PyTorch:深度学习中的核心概念
## 引言
在深度学习中,损失函数的选择对模型的训练和性能至关重要。交叉熵(Cross-Entropy)作为一种常用的损失函数,广泛应用于分类问题中。本文将介绍交叉熵的基本概念,如何在 PyTorch 中使用交叉熵损失函数,并通过代码示例帮助读者更好地理解其实际应用。
## 什么是交叉熵?
交叉熵是一种测量两个概率分布之间差异的指标。假设
引言:在使用pytorch中的损失函数时,经常会使用到:nn.CrossEntropyLoss()该损失函数整合了nn.LogSoftmax()和nn.NLLLoss(),常用于训练分类任务。特别是在神经网络做分类问题时,经常使用交叉熵作为损失函数,此外,由于交叉熵涉及到计算每个类别的概率,所以交叉熵几乎每次都和sigmoid(或softmax)函数一起出现。我们用神经网络最后一层输出的情况,来看
转载
2023-08-11 15:20:22
110阅读
最近在做交叉熵的魔改,所以需要好好了解下交叉熵,遂有此文。关于交叉熵的定义请自行百度,相信点进来的你对其基本概念不陌生。本文将结合PyTorch,介绍离散形式的交叉熵在二分类以及多分类中的应用。注意,本文出现的二分类交叉熵和多分类交叉熵,本质上都是一个东西,二分类交叉熵可以看作是多分类交叉熵的一个特例,只不过在PyTorch中对应方法的实现方式不同(不同之处将在正文详细讲解)。好了,废话少叙,正文
转载
2023-08-11 14:18:11
264阅读
什么是交叉熵交叉熵(Cross-entropy)是信息论中一个常用的度量方式,常用于衡量两个概率分布之间的差异。在机器学习中,交叉熵常用于衡量真实概率分布与预测概率分布之间的差异,用于评估分类模型的性能。假设有两个概率分布 P 和Q,则它们的交叉熵为:其中,P(x) 表示事件 x 在真实分布中的概率,Q(x) 表示事件x 在预测分布中的概率,log 表示自然对数。交叉熵越小,表示预测分布越接近真实
转载
2023-09-25 08:54:31
85阅读
## PyTorch实现交叉熵损失函数
### 一、引言
在深度学习中,交叉熵损失函数(Cross Entropy Loss)是一种常用的损失函数,用于衡量模型的输出与真实标签之间的差异。PyTorch是一款广泛使用的深度学习框架,本文将介绍如何使用PyTorch实现交叉熵损失函数。
### 二、流程概览
下面是实现交叉熵损失函数的整体流程:
```mermaid
gantt
t
原创
2023-11-14 13:19:12
146阅读
说起交叉熵损失函数「Cross Entropy Loss」,我们都不陌生,脑海中会马上浮现出它的公式:我们已经对这个交叉熵函数的形式非常熟悉,多数情况下都是直接拿来使用。那么,它是怎么来的?为什么它能表征真实样本标签和预测概率之间的差值?上面的交叉熵函数是否有其它变种?接下来我将尽可能通俗地回答上面这几个问题。(一)交叉熵损失函数的数学原理我们知道,在二分类问题模型,例如逻辑回Logistic R
今天这篇文章和大家聊聊机器学习领域的熵。 我在看paper的时候发现对于交叉熵的理解又有些遗忘,复习了一下之后,又有了一些新的认识。
故写下本文和大家分享。
熵这个概念应用非常广泛,我个人认为比较经典的一个应用是在热力学当中,反应一个系统的混乱程度。 根据热力学第二定律,一个孤立系统的熵不会减少。
比如一盒乒乓球,如果把盒子掀翻了,乒乓球散出来,它的熵
目录1. 交叉熵详解1.1 信息量1.2 熵1.3 相对熵(KL散度)1.4 交叉熵1.5 小结2. 交叉熵的应用(pytorch中) 2.1 交叉熵在分类任务中的计算过程2.2 log_softmax()函数2.3 nll_loss()函数2.4 cross_entropy()函数2.5 函数的其
转载
2023-09-08 12:46:10
126阅读
介绍? 本实验主要讲解了分类问题中的二分类问题和多分类问题之间的区别,以及每种问题下的交叉熵损失的定义方法。由于多分类问题的输出为属于每个类别的概率,要求概率和为 1 。因此,我们还介绍了如何利用 Softmax 函数,处理神经网络的输出,使其满足损失函数的格式要求。知识点??二分类和多分类?交叉熵损失?