介绍? 本实验主要讲解了分类问题中的二分类问题和多分类问题之间的区别,以及每种问题下的交叉熵损失的定义方法。由于多分类问题的输出为属于每个类别的概率,要求概率和为 1 。因此,我们还介绍了如何利用 Softmax 函数,处理神经网络的输出,使其满足损失函数的格式要求。知识点??二分类和多分类?交叉熵损失?
二分类和多分类交叉熵函数区别详解写在前面查了下百度,交叉熵,是度量两个分布间差异的概念。而在我们神经网络中,两个分布也就是y的真实值分布和预测值分布。当两个分布越接近时,其交叉熵值也就越小。根据上面知识,也就转化为我们需要解决让预测值和真实值尽可能接近的问题,而这正与概率论数理统计中的最大似然分布一脉相承,进而目标转化为确定值的分布和求解最大似然估计问题。二分类问题表示分类任务中有两个类别,比如我
背景最近一直在总结Pytorch中Loss的各种用法,交叉熵是深度学习中最常用的计算方法,写这个稿子把交叉熵的来龙去脉做一个总结。什么是交叉熵信息量引用百度百科中信息量的例子来看,在日常生活中,极少发生的事件一旦发生是容易引起人们关注的,而司空见惯的事不会引起注意,也就是说,极少见的事件所带来的信息量多。如果用统计学的术语来描述,就是出现概率小的事件信息量多。因此,事件出现得概率越小,信息量愈大。
Pytorch中的学习率调整有两种方式:手动调整optimizer中的lr参数利用lr_scheduler()提供的几种衰减函数 Pytorch中的学习率调整方法一. 手动调整optimizer中的lr参数二. 利用lr_scheduler()提供的几种调整函数2.1 LambdaLR(自定义函数)2.2 StepLR(固定步长衰减)2.3 MultiStepLR(多步长衰减)2.4 Expone
转载
2023-11-08 20:30:13
246阅读
一、对多分类函数tf.nn.softmax()与交叉熵函数tf.nn.softmax_cross_entropy_with_logits()的认识这俩函数看着就有关系,前缀都是tf.nn.softmax,那么各自的作用是什么呢? 首先看这俩函数的参数,前者是logits,后者也
eep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它。虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好。而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但
转载
2023-08-22 12:08:30
146阅读
# PyTorch 中的 Loss 不变性
在深度学习中,优化算法通过最小化损失函数(Loss Function)来训练模型。在使用 PyTorch 进行模型训练时,我们经常遇到 "loss 不变" 的现象。本文将深入探讨这一现象,解析其背后的原因,并提供相关代码示例以供参考。
## Loss 的基础概念
损失函数用于量化模型输出与真实标签之间的差异。其目的是通过反向传播调整模型参数,使得损
原创
2024-09-19 06:12:48
85阅读
神经网络与机器学习
第6章 反向传播-多层前馈神经网络训练
§6.4 目标函数的选择
上一节详细推导了反向传播算法,并举了两个例子。我们再来回顾一下当取目标函数为均方误差的时候,反向传播敏感度
后向传播
可见敏感度输出层的激活函数导数和误差乘积,特别地分类问题中经常用到的sigmoid函数
sigmoid函数与其导数
这里出现了问题,比如,当输出接近0.952
前言深度学习模型优化,即优化网络权值使得该模型拟合数据的能力达到最优,而最优的一个标准是损失函数较小(兼顾训练数据和测试数据,以及实际应用场景的最优)。PyTorch中有很多损失函数,这里我主要介绍最常用的两种,NLLLoss和CrossEntropyLoss;而实际上CrossEntropyLoss更常用,NLLLoss与其的关系也会在本文中详细介绍。1. Softmax要介绍上述两个损失函数的
转载
2023-10-26 21:29:33
405阅读
# 实现"pytorch交叉熵"的教程
## 步骤概览
首先,让我们来看一下整个实现"pytorch交叉熵"的流程:
| 步骤 | 操作 |
| --- | --- |
| 1 | 导入必要的库 |
| 2 | 创建模型 |
| 3 | 准备数据 |
| 4 | 定义损失函数 |
| 5 | 训练模型 |
| 6 | 测试模型 |
接下来,我们将逐步进行这些操作,为小白开发者详细讲解每一步需
原创
2024-03-25 06:45:51
62阅读
# 交叉熵与 PyTorch:深度学习中的核心概念
## 引言
在深度学习中,损失函数的选择对模型的训练和性能至关重要。交叉熵(Cross-Entropy)作为一种常用的损失函数,广泛应用于分类问题中。本文将介绍交叉熵的基本概念,如何在 PyTorch 中使用交叉熵损失函数,并通过代码示例帮助读者更好地理解其实际应用。
## 什么是交叉熵?
交叉熵是一种测量两个概率分布之间差异的指标。假设
前言交叉熵损失本质是衡量模型预测的概率分布与实际概率分布的差异程度,其值越小,表明模型的预测结果与实际结果越接近,模型效果越好。熵的概念来自与信息论,参考资料1对交叉熵的概念做了简明的介绍,很好理解。需要注意: Pytorch中的CrossEntropyLoss是LogSoftMax与NLLLoss的结合,下面以实例逐步拆解CrossEntropyLoss的计算过程。LogSoftMax当网络最后
转载
2023-08-11 21:23:36
171阅读
什么是交叉熵交叉熵(Cross-entropy)是信息论中一个常用的度量方式,常用于衡量两个概率分布之间的差异。在机器学习中,交叉熵常用于衡量真实概率分布与预测概率分布之间的差异,用于评估分类模型的性能。假设有两个概率分布 P 和Q,则它们的交叉熵为:其中,P(x) 表示事件 x 在真实分布中的概率,Q(x) 表示事件x 在预测分布中的概率,log 表示自然对数。交叉熵越小,表示预测分布越接近真实
转载
2023-09-25 08:54:31
85阅读
最近在做交叉熵的魔改,所以需要好好了解下交叉熵,遂有此文。关于交叉熵的定义请自行百度,相信点进来的你对其基本概念不陌生。本文将结合PyTorch,介绍离散形式的交叉熵在二分类以及多分类中的应用。注意,本文出现的二分类交叉熵和多分类交叉熵,本质上都是一个东西,二分类交叉熵可以看作是多分类交叉熵的一个特例,只不过在PyTorch中对应方法的实现方式不同(不同之处将在正文详细讲解)。好了,废话少叙,正文
转载
2023-08-11 14:18:11
264阅读
引言:在使用pytorch中的损失函数时,经常会使用到:nn.CrossEntropyLoss()该损失函数整合了nn.LogSoftmax()和nn.NLLLoss(),常用于训练分类任务。特别是在神经网络做分类问题时,经常使用交叉熵作为损失函数,此外,由于交叉熵涉及到计算每个类别的概率,所以交叉熵几乎每次都和sigmoid(或softmax)函数一起出现。我们用神经网络最后一层输出的情况,来看
转载
2023-08-11 15:20:22
107阅读
在使用 PyTorch 进行模型训练时,有时可能会遇到“loss 值不变”的问题,这通常表明模型未能有效学习。要解决此问题,我们可以从多个方面分析并逐步解决。接下来,我将详细记录下这个过程,将包括版本对比、迁移指南、兼容性处理、实战案例、排错指南和性能优化。
### 版本对比
首先,了解不同版本的 PyTorch 可以帮助我们识别潜在的问题。下面是一个版本特性差异的对比表格。
| 版本
1. 问题描述在复现论文的过程中,遇到了训练模型Loss一直为负的情况。程序主要通过深度学习实现一个分类任务。编程与debug过程全部在windows10系统,Pycharm2018v1.4的IDE下完成,主要框架为pytorch 1.2.0。复现过程中采用了交叉熵损失函数计算Loss。训练过程中输出信息如下:输出部分的代码段:for batch_idx, (data, target) in en
转载
2023-09-27 09:18:39
550阅读
pytorch之交叉熵损失函数一、交叉熵Pytorch中计算的交叉熵并不是采用 而是它是交叉熵的另外一种方式。 Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。 实际等同于: CrossEntropyLoss()=log_softmax() + NLLLoss() 交叉熵损失函数是常常用来来解决C分类问题的,需要给函数提
转载
2024-02-04 22:27:20
219阅读
交叉熵交叉熵的原理为什么使用交叉熵引出交叉熵交叉熵的实际使用 交叉熵的原理为什么使用交叉熵当我们使用sigmoid函数作为激活函数,计算损失值时所用到的函数是二次代价函数(真实值减去与测试的平方),调整权值时的快慢与激活函数的导数有关. 当损失值较大的时候,应该调整的快一些, 当损失值较小的时候,可以调整的慢一些. 但是,使用二次代价函数,并不能实现这个功能.引出交叉熵因此改变计算损失值的代价函
转载
2023-10-15 11:20:23
106阅读
目录1. 交叉熵详解1.1 信息量1.2 熵1.3 相对熵(KL散度)1.4 交叉熵1.5 小结2. 交叉熵的应用(pytorch中) 2.1 交叉熵在分类任务中的计算过程2.2 log_softmax()函数2.3 nll_loss()函数2.4 cross_entropy()函数2.5 函数的其
转载
2023-09-08 12:46:10
126阅读