Pytorch实现word2vec主要内容Word2Vec的原理网上有很多很多资料,这里就不再复述了。本人使用pytorch来尽可能复现Distributed Representations of Words and Phrases and their Compositionality 论文中训练词向量的方法。论文中有很多模型实现的细节,这些细节对于词向量的好坏至关重要。我们虽然无法完全复现论文中
转载
2023-12-15 10:43:45
103阅读
目录 目录1.读写数据集2.重采样3.建立datasetLoader4.搭建skip-gram模型5.训练1.读写数据集使用的是一份英文数据集。其网盘地址如下:实现工具:Jupyter提取码:7m14 之前看了许多博主和教学视频都是训练中文词向量,但是中文词向量有一个很麻烦的事情就是分词。他们几乎都毫不犹豫的选择jieba分词,然而jieba分词是基于1阶马尔科夫随机场分词,这
转载
2023-12-06 11:31:41
112阅读
# 导入包
import collections
import math
import random
import time
import os
import numpy as np
import torch
from torch import nn
import sys
import torch.utils.data as Data1.处理数据集# 打开并读取数据集ptb
dataset_pat
转载
2023-11-07 01:16:11
84阅读
看不懂你打我系列,是小老弟在学习某个知识点或概念过程中的总结,希望小老弟能够讲的明白~
导读word2vec将分为两篇进行推送,第一篇对其基本原理、两种训练任务和推导进行介绍,第二篇对word2vec训练过程中的加速算法进行介绍。word2vec,如其名字"word to vector",词语向量化,虽然新出的Bert等深度学习模型横扫各大文本任务,但word2vec仍有其独特的魅力和
转载
2023-11-25 12:46:41
139阅读
pytorch自动微分torch.Tensor是包的核心类,有个属性.requires_grad设为True就会跟踪tensor所有操作。计算完成后调用backward()自动计算所有梯度。这个张量的梯度将累计到.grad属性中调用.detach()可以与计算历史记录分离。也可以用 with torch.no_grad(): 包起来。Tensor当中有一个属性grad_fn用来记录创建了张量的Fu
转载
2024-10-19 17:00:58
86阅读
一、介绍word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包。它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量。Word2vec的模型以大规模语料库作为输入,然后生成一个向量空间(通常为几百维)。词典中的每个词都对应了向量空间中的一个独一的向量,而且语料库中拥有共同上下文的词映射到向量空间中的距离会更近。wor
Word2Vec的pytorch实现(Skip-gram)写在前面:正文代码部分读取数据构建DataSet构建Loader构建训练模型模型训练测试词向量 写在前面:本篇文章是我个人的学习记录,仅包含代码实现和一些个人理解,参考的一些文章我会给出链接。深度学习word2vec笔记之算法篇.Word2VecPyTorch 实现 Word2VecWord2Vec的数学原理详解:链接:https://p
转载
2023-10-16 16:34:07
134阅读
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算。 word2vec(word to vector)顾名思义,这是一个将单词转换成向量形式的工具。通过转换,可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相
转载
2024-02-29 15:11:49
72阅读
Word2Vec实现 文章目录Word2Vec实现一、Word2Vec原理损失函数-负采样二、主流实现方式1.gensim2.jiabaWord2Vec调参缺点:总结 一、Word2Vec原理 一句话,word2vec就是用一个一层的神经网络(CBOW的本质)把one-hot形式的词向量映射为分布式形式的词向量,为了加快训练速度,用了Hierarch
转载
2024-04-22 12:33:30
361阅读
文章目录一、前言二、 向量化算法word2vec2.1 引言2.2 word2vec原理2.3 词的表示三、神经网络语言模型四、C&W模型五、CBOW模型5.1 CBOW模型结构图5.2 CBOW的输入输出六、Skip-gram模型6.1 Skip-gram模型结构图6.2 Skip-gram模型输入输出七、向量化算法doc2vec/str2vec7.1 doc2vec模型八、文本向量化
转载
2024-07-01 06:49:14
155阅读
在自然语言处理领域中,本文向量化是文本表示的一种重要方式。在当前阶段,对文本的大部分研究都是通过词向量化实现的,但同时也有一部分研究将句子作为文本处理的基本单元,也就是doc2vec和str2vec技术。1. word2vec简介大家很熟悉的词袋(bag of words)模型是最早的以词语为基本处理单元的文本向量化算法,所谓的词袋模型就是借助于词典把文本转化为一组向量,下面是两个简单的文本示例:
转载
2024-04-05 15:28:25
212阅读
最近在面试的时候被问到了word2vec相关的问题,答得不好,所以结束后回顾了一下word2vec的内容,现在把回顾梳理的内容记录一下。有些是自己的想法,可能会有一些谬误。下面进入正题。先来介绍相关的Notation我们定义两个矩阵\[V\in {\mathbb R}^{n\times|{\mathcal V}|}
\]\[U \in {\mathbb R}^{|{\mathcal V}|\tim
转载
2024-05-08 12:41:24
85阅读
一、Word2vecword2vec是Google与2013年开源推出的一个用于获取word vecter的工具包,利用神经网络为单词寻找一个连续向量看空间中的表示。word2vec是将单词转换为向量的算法,该算法使得具有相似含义的单词表示为相互靠近的向量。此外,它能让我们使用向量算法来处理类别,例如着名等式King−Man+Woman=Queen。
转载
2024-04-25 08:24:03
66阅读
"""本系列尝试用最浅显的语言描述机器学习核心思想和技术在工业级推荐系统中的应用场景。有兴趣的童鞋可以自行搜索相应的数学材料深度理解。不定期更新 & 佛系推荐学习材料 & 建议欢迎私信"""word2vec 通过训练产生目标(内容/用户/etc) 的向量表示(embeddings),并且相似目标的向量表示距离相近,入下图所示: 语义相近的词,投影到二维平面上后距离
转载
2024-04-27 19:18:51
48阅读
word2vec 是google 推出的做词嵌入(word embedding)的开源工具。 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为"word embedding"。基于这个向量表示,可以计算词与词之间的关系,例如相似性(同义词等),语义关联性(中国 - 北京 = 英国 - 伦敦)等。NLP中传统的词表示方法是 one-hot
转载
2024-02-29 16:46:12
78阅读
实验主要来自天池的一个新人赛,赛题以自然语言处理为背景,要求选手根据新闻文本字符对新闻的类别进行分类,这是一个经典文本分类问题。通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触 NLP 的预处理、模型构建和模型训练等知识点。赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出 14 个候选分类类别:财经、彩票、房产、股
转载
2024-07-07 13:36:55
25阅读
目录目录1.n-gram2.神经网络语言模型3.word2Vec4.训练技巧4.1重采样4.2负采样4.3层序softmax1.n-gram一句话由许多词构成,例如:“I love NanJing University”。在语言模型里面,我们常常将某句话生成的看做是一个概率事件。我们脑海里常常构思的语言句子,那么其出现的频数也比较多,发生概率就大,胡言乱语的语句频数少,发生的概率也较小。但是从句子
# 使用 PyTorch 调用 Word2Vec 接口的教程
在自然语言处理领域,Word2Vec 是一种常用的词嵌入模型,可以将词语转化为向量表示。PyTorch 是一个深度学习框架,可用于实现和训练神经网络。本文将逐步指导你如何使用 PyTorch 调用 Word2Vec 接口,并将其应用于文本数据中。
## 流程概述
下面是一个简单的流程表格,展示如何实现“PyTorch 调用 Wor
图来自书《深度学习进阶:自然语言处理》,CBOW代码实现来自科学空间的苏剑林大神。 一、CBOW(continuous bag-of-words) #! -*- coding:utf-8 -*- #Keras版的Word2Vec,作者:苏剑林,http://kexue.fm #Keras 2.0.6 ...
转载
2021-10-18 23:29:00
531阅读
2评论
文章目录简介原理代码分析最后 简介“i do not love coding”,对于这样一句话,计算机是看不懂的,也不能直接进行输入,所以我们需要对他进行编码,让计算机能够看懂。那么可能我们会第一时间想到onehot,是的经过onehot之后计算机确实可以进行处理了,但是会存在下面这个问题:假设我们现在的语料库只有这五个单词,那么vocab_size = 5下面这张图请大家忽略一些nlp上面的预
转载
2024-03-26 10:50:35
243阅读