自动进行调参,我们以的代码为基础,进行output_channel和learning rate的调参1 导入库from functools import partial import numpy as np import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim
# 如何实现PyTorch loss迅速减小不变 在深度学习模型训练过程中,有时会遇到Loss值迅速减小不再变化的情况。这通常意味着模型已经收敛或陷入了局部最优解。接下来,我将逐步引导你如何解决这个问题,确保你的模型能够持续学习。 ## 处理流程 以下是我们需要遵循的流程,看看如何有效解决这个问题: | 阶段 | 描述
原创 10月前
354阅读
在本教程中,我们将深入探讨如何微调和特征提取torchvision 模型,所有这些模型都已经预先在1000类的imagenet数据集上训练完成。本程将深入介绍如何使用几个现代的CNN架构,并为如何在PyTorch中使用这些预训练模型进行微调建立直觉。 由于每个模型架构是有差异的,因此没有可以在所有场景中使用的样板微调代码。 然而,研究人员必须查看现有架构并对每个模型进行自定义调整。在本文档中,我们
展示如何利用Pytorch来进行模型微调。 本文目的:基于kaggle上狗的种类识别项目,展示如何利用PyTorch来进行模型微调PyTorch中torchvision是一个针对视觉领域的工具库,除了提供有大量的数据集,还有许多预训练的经典模型。这里以官方训练好的resnet50为例,拿来参加kaggle上面的dog breed狗的种类识别。1 导入相
转载 2023-08-07 11:56:37
271阅读
背景最近一直在总结PytorchLoss的各种用法,交叉熵是深度学习中最常用的计算方法,写这个稿子把交叉熵的来龙去脉做一个总结。什么是交叉熵信息量引用百度百科中信息量的例子来看,在日常生活中,极少发生的事件一旦发生是容易引起人们关注的,而司空见惯的事不会引起注意,也就是说,极少见的事件所带来的信息量多。如果用统计学的术语来描述,就是出现概率小的事件信息量多。因此,事件出现得概率越小,信息量愈大。
        当我们训练一个神经网络模型的时候,我们经常会遇到这样的一个头疼的问题,那就是,神经网络模型的loss值不下降,以致我们无法训练,或者无法得到一个效果较好的模型。导致训练时loss不下降的原因有很多,而且,更普遍的来说,loss不下降一般分为三种,即:训练集上loss不下降,验证集上loss不下降,和测试集上loss不下降。这里,首先默认各位都
文章目录前言微调代码实现Reference前言在实际生产生活中所接触到的数据集,远不及ImageNet数据集中样本数的十
原创 2022-06-27 16:55:28
517阅读
在使用 PyTorch 进行深度学习训练时,开启混合精度训练(Mixed Precision Training)可以有效提高计算效率,降低内存使用。然而,有时会出现 `loss` 值变为 `nan` 的情况,这对于模型训练是致命的。在这篇博文中,我将详细记录如何解决“PyTorch开启混合精度 loss nan”的问题,包括备份策略、恢复流程、灾难场景、工具链集成、预防措施和监控告警。 ###
原创 6月前
191阅读
我用的是Anaconda3 ,用spyder编写pytorch的代码,在Anaconda3中新建了一个pytorch的虚拟环境(虚拟环境的名字就叫pytorch)。以下内容仅供参考哦~~1.首先打开Anaconda Prompt,然后输入activate pytorch,进入pytorch.2.输入pip install tensorboardX,安装完成,输入python,用from tens
转载 2023-07-28 15:38:38
1080阅读
目录前言一、损失函数二、详解1.回归损失2.分类损失三. 总结  前言损失函数在深度学习中占据着非常重要的作用,选取的正确与否直接关系到模型的好坏。本文就常用的损失函数做一个通俗易懂的介绍。一、损失函数根据深度函数的模型类型,损失函数可分为三类:1. 回归损失(Regression loss):预测连续的数值,即输出是连续数据:如预测房价、气温等;2. 分类损失(Classificat
文章目录1 Loss 介绍2 常见 LossL1 lossL2 lossNegative Log-Likelihood(NLL)Binary Cross-EntropyCross-EntropyHinge EmbeddingMargin Ranking LossTriplet Margin LossKL Divergence Loss3 Loss 设计4 softmax 及其变体5 Loss
目录参考文献人脸损失函数CenterLoss (2016)余弦距离 cosine lossCosineMarginLoss(Large-Margin-Cosine-Loss)(2018 CosFace)ArcFaceCircle Loss(2020)MV-Softmax loss(2020)CurricularFace(2020)人脸损失函数github源码详解ArcFace(InsightFa
目录准备知识pytorch计算图(前馈+反向)pytorch线性回归(代码实战)构造数据pytorch中的分析构造模型构造损失函数和优化器迭代更新梯度输出与测试 准备知识注:了解计算图的同学可直接跳过。pytorch计算图(前馈+反向)无论在pytorch还是在tensorflow中,都是用计算图来计算前馈和反向传播过程。我们首先来介绍一个简单的计算图: 如上图所示,表示了y’ = w * x的
文章目录1. 损失函数总览2. 回归损失函数3. 分类损失函数3.1 [交叉熵](https://charlesliuyx.github.io/2017/09/11/什么是信息熵、交叉熵和相对熵/ "【直观详解】信息熵、交叉熵和相对熵")3.2 分类损失函数3.3 总结 文章目录1. 损失函数总览2. 回归损失函数3. 分类损失函数3.1 [交叉熵](https://charlesliuyx.
转载 2023-08-09 00:55:43
223阅读
文章目录1、CrossEntropyLoss-CE 交叉熵损失1.1 是什么?1.2 物理含义1.2 怎么代码实现和代码使用?1.2* 怎么代码实现和代码使用?1.3 应用场景1.3.1 多分类1.3.1 数值的回归参考 1、CrossEntropyLoss-CE 交叉熵损失1.1 是什么?一个损失函数,虽然说的是交叉熵,但是和《信息论》的交叉熵不一样。首先输入是size是(minibatch,
文章目录1. CrossEntropyLoss()1.1 CEL中不同计算模式的影响1.2 CEL中分类权重 weights 的影响1.3 nn.LogSoftmax()2. nn.NLLLoss()3. nn.BCELoss()4. nn.BCEWithLogitsLoss()5. nn.L1LOSS (MAE)6. nn.MSELoss7. nn.SmoothL1Loss8. nn.Pois
在上一篇文章 中,我们自己手动实现了对于softmax操作和交叉熵的计算,可其实这些在Pytorch框架中已经被实现了,我们直接拿来使用即可。但是,为了能够对这些内容有着更深刻的理解,通常我们都会自己手动实现一次,然后在今后的使用中就可以直接拿现成的来用了。在接下来这篇文章中,笔者将首先介绍如何调用Pytorch中的交叉熵损失函数,然后再同时借助nn.Linear()来实现一个简洁版的
在构建losspytorch常用的包中有最常见的MSE、cross entropy(logsoftmax+NLLLoss)、KL散度Loss、BCE、HingeLoss等等,详见:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/#loss-functions这里主要讲解一种考虑类间距离的Center
转载 2024-03-06 09:58:54
217阅读
前言交叉熵损失本质是衡量模型预测的概率分布与实际概率分布的差异程度,其值越小,表明模型的预测结果与实际结果越接近,模型效果越好。熵的概念来自与信息论,参考资料1对交叉熵的概念做了简明的介绍,很好理解。需要注意: Pytorch中的CrossEntropyLoss是LogSoftMax与NLLLoss的结合,下面以实例逐步拆解CrossEntropyLoss的计算过程。LogSoftMax当网络最后
转载 2023-08-11 21:23:36
171阅读
文章目录triplet losstriplet hard loss triplet loss官方文档:torch.nn — PyTorch master documentation关于三元损失,出自论文:FaceNet: A Unified Embedding for Face Recognition and Clustering三元损失的介绍很多看下图:训练集中随机选取一个样本:Anchor(
转载 2024-01-05 10:09:39
399阅读
  • 1
  • 2
  • 3
  • 4
  • 5