展示如何利用Pytorch来进行模型微调。
本文目的:基于kaggle上狗的种类识别项目,展示如何利用PyTorch来进行模型微调。PyTorch中torchvision是一个针对视觉领域的工具库,除了提供有大量的数据集,还有许多预训练的经典模型。这里以官方训练好的resnet50为例,拿来参加kaggle上面的dog breed狗的种类识别。1 导入相
转载
2023-08-07 11:56:37
271阅读
1 简介 有关BERT的知识点可以参考如下链接 ,这里使用官方预训练好的BERT模型,在SQuAD v1.1上进行微调。BERT: Pre-training of Deep Bidirectional Transformers forLanguage Understanding_SU_ZCS的博客 &nb
转载
2024-08-16 20:50:06
150阅读
bert微调步骤:首先从主函数开刀:copy run_classifier.py 随便重命名 my_classifier.py先看主函数:if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flag
转载
2023-11-26 12:21:22
795阅读
问题阅读正文之前尝试回答以下问题,如果能准确回答,这篇文章不适合你;如果不是,可参考下文。为什么会有偏差和方差?偏差、方差、噪声是什么?泛化误差、偏差和方差的关系?用图形解释偏差和方差。偏差、方差窘境。偏差、方差与过拟合、欠拟合的关系?偏差、方差与模型复杂度的关系?偏差、方差与bagging、boosting的关系?偏差、方差和K折交叉验证的关系?如何解决偏差、方差问题?本文主要参考知乎文章,如有
# 深入理解 BERT 微调:PyTorch 实现指南
## 引言
BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer的语言表示模型,因其预测语言上下文的能力,在多个自然语言处理任务中取得了显著的成绩。在这篇文章中,我们将一起走过使用PyTorch对BERT进行微调的全过程。
## 流程概
# 使用CPU跑BERT微调 PyTorch
## 引言
BERT(Bidirectional Encoder Representations from Transformers)是一种强大的自然语言处理模型,广泛应用于文本分类、问答等任务。微调BERT模型的方法多种多样,但对于资源有限的用户,使用CPU进行微调是一个经济实惠的方法。本文将介绍如何在PyTorch中使用CPU进行BERT模型的
原创
2024-10-23 05:16:32
578阅读
# 如何实现“pytorch bert微调中文实体识别”
## 1. 概述
在这篇文章中,我将向你介绍如何使用PyTorch和BERT模型进行中文实体识别的微调。对于一个刚入行的小白来说,这可能是一个有趣的挑战,但请不要担心,我将一步步指导你完成整个过程。
## 2. 流程概览
首先,让我们看一下整个流程的步骤:
| 步骤 | 描述 |
| ------ | ------ |
| 1 |
原创
2024-07-04 03:56:43
223阅读
文章目录Transformer PE - sin-cos 1dVIT PE - trainable 1dSw PE - trainable relative bias 2dMAE PE - sin cos 2d Transformer PE - sin-cos 1d正余弦不可学习PE,之前的博客里面提到过了,这里引用一下就好PE矩阵可以看作是两个矩阵相乘,一个矩阵是pos(/左边),另一个矩阵是
转载
2024-01-17 10:28:09
100阅读
对于序列级和词元级自然语言处理应用,BERT只需要最小的架构改变(额外的全连接层),如单个文本分类(例如,情感分析和测试语言可接受性)、文本对分类或回归(例如,自然语言推断和语义文本相似性)、文本标记(例如,词性标记)和问答。在下游应用的监督学习期间,额外层的参数是从零开始学习的,而预训练BERT模型中的所有参数都是微调的。我们可以针对下游应用对预训练的BERT模型进行微调,例如在SNLI数据集上
转载
2024-03-13 17:00:18
155阅读
背景介绍文本分类是NLP中的一个经典任务, 通常在大型的数据集进行一些预训练的模型在文本分类上可以取得很不错的成绩。例如word2vec, CoVe(contextualized word embeddings)和ELMo都取得了不错的成绩。Bert是基于双向transformer使用masked word prediction和NSP(next sentence prediction)的任务进行
转载
2024-04-05 22:18:47
89阅读
a)是句子对的分类任务 b)是单个句子的分类任务 c) 是问答任务 d)是序列标注任务首先我自己最常用的就是:文本分类、序列标注和文本匹配。 这四个都是比较简单的,我们来看d)序列标注,其实就是把所有的token输出,做了一个softmax,去看它属于实体中的哪一个。对于单个样本,它的一个文本分类就是使用CLS这边,第一个CLS的输出,去做一个微调,做一个二分类,或者是多分类。 a)这个其实本质
转载
2024-08-26 13:19:42
40阅读
在本教程中,我们将深入探讨如何微调和特征提取torchvision 模型,所有这些模型都已经预先在1000类的imagenet数据集上训练完成。本程将深入介绍如何使用几个现代的CNN架构,并为如何在PyTorch中使用这些预训练模型进行微调建立直觉。 由于每个模型架构是有差异的,因此没有可以在所有场景中使用的样板微调代码。 然而,研究人员必须查看现有架构并对每个模型进行自定义调整。在本文档中,我们
转载
2024-01-22 21:58:52
99阅读
本文主要是针对入门级别的Bert使用,先让模型能够实现文本分类,后续会讲解huggingface的Bert流程化的使用,包括英文文本分类和中文文本分类。英文部分使用BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding中的Cola数据集,任务如下图 这个数据集包括四列:[‘sentence_s
转载
2023-07-04 21:49:21
284阅读
BERT模型介绍一、什么是BERT?BERT:全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,BERT的模型架构基于多层双向转换解码,因为decoder是不能获要预测的信息的,模型的主要创新点都在pre-traing方法上,即用了Masked LM和Next Sentence Pred
转载
2024-01-20 19:54:14
117阅读
Bert初识 训练向量比较好用的工具(不需要对特定的任务修改模型,预训练时进行微调就可以满足各种任务) Bert:基于微调的语言模型。利用左右两侧的上下文信息,通过联合调节所有层中的双向Transformer来训练预训练深度双向表示,transformer作为特征提取器 GPT:基于微调的语言模型。可以单项获得句子上下文更远的语言信息使用bert Google公布的模型(预训练模型):使用时进行特
文章目录前言微调代码实现Reference前言在实际生产生活中所接触到的数据集,远不及ImageNet数据集中样本数的十
原创
2022-06-27 16:55:28
517阅读
1.前言bert是非常出名的预训练模型,它在很少的数据也能有很好的表现。 在我们将要引出bert模型时,先来简单diss其他常见模型的缺点吧!!diss Word2vec word2vec 不能解决一词多义,也不能解决OOV问题,生成的句子和文档向量也差强人意diss RNN 最出名的缺点是:不能并行,训练速度太慢了diss CNN 虽然可以并行,但太适用于分类任务了,用在其他NLP任务上,效果
一、分词器[CLS]、[SEP]对应的编号分别是101、102input_ids 是词在vocab.txt中对应的编号attention_mask 是注意力掩码,用来标注哪些位置的词是真实的(1),哪里是填充区域(0)token_type_ids 是句子类型ID,用于句子对任务中区别两个句子,当只有一种类型是,默认都为0。文本: [CLS] 今天天气很好 [SEP] 适合出去玩 [SEP]
tok
bertorch ( https://github.com/zejunwang1/bertorch ) 是一个基于 pytorch 进行 bert 实现和下游任务微调
转载
2022-06-03 00:50:34
1055阅读
# 深度学习中的预训练模型:BERT与PyTorch
在深度学习领域,预训练模型是一种非常重要的技术,它可以通过在大规模的语料库上进行预训练,然后在特定任务上进行微调,从而取得出色的性能。BERT(Bidirectional Encoder Representations from Transformers)是一种非常流行的预训练模型,它由Google在2018年提出,通过Transformer
原创
2024-02-26 05:33:49
53阅读