作者 | 李秋键引言:近些年来,“预测”一词在各个领域被频繁提及,所谓预测,实际上就是根据历史规律,推测未来结果。在科学技术发展有限的过去,预测主要是利用经验去推测未来,随着社会的发展,对预测的客观性和准确性提出了更高的要求,简单的经验推理已无法满足社会的需求。近几十年来,随着人工智能技术的发展,出现了新型的预测方法,人工神经网络预测技术正是其中佼佼者。人工神经网络预测技术一经面世就展现
转载
2024-06-12 06:05:59
76阅读
目录【A】安装配置环境【B1】预测单张图像-英文【B2】预测单张图像-中文【C1】预测视频文件-英文【C2】预测视频文件-中文【D1】预测摄像头实时画面-英文【D2】预测摄像头实时画面-中文总结吐槽:谷歌的网页关闭设置真的,,,我刚完善完听课内容,不小心关闭了,直接从头开始这次还是用了feature的GPU,Kaggle那个没那么方便,当然平时运行的项目不太大还是可以用教学视频:同济子豪兄的个人空
转载
2024-05-13 13:24:37
83阅读
# 使用PyTorch实现LSTM多元回归预测
随着机器学习与深度学习技术的发展,长短期记忆网络(LSTM)作为一种有效的时间序列分析工具,在多元回归预测中被广泛应用。本文将介绍如何利用PyTorch框架实现LSTM进行多元回归预测,并通过代码示例带领您逐步掌握这一技术。
## LSTM网络简介
LSTM是一种特殊的循环神经网络(RNN),能够捕捉长时间依赖的特征,克服了传统RNN在处理长序
数据集链接:https://pan.baidu.com/s/1Y2vZ5Rvn2PpRkj9XhnZrXQ?pwd=yyds 提取码:yyds 多元线性回归是简单线性回归的升级版,在数学的角度上来看,就是从一元方程升级到多元方程。1.数据预处理代码:# 第一步:数据预处理
import pandas as pd
import numpy as np
from sklearn.preprocessi
转载
2023-10-20 07:46:01
337阅读
PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和余弦退火CosineAnnealing。自适应调整:自适应调整学习率 ReduceLROnPlateau。自定义调整:自定义调整学习率 Lambd
时间序列是指在一段时间内发生的任何可量化的度量或事件。尽管这听起来微不足道,但几乎任何东西都可以被认为是时间序列。一个月里你每小时的平均心率,一年里一只的日收盘价,一年里某个城市每周发生的交通事故数。在任何一段时间段内记录这些信息都被认为是一个时间序列。对于这些例子中的每一个,都有事件发生的频率(每天、每周、每小时等)和事件发生的时间长度(一个月、一年、一天等)。在本教程中,我们将使用 PyT
转载
2023-11-01 13:43:59
38阅读
对于一个单词,会有这不同的词性,首先能够根据一个单词的后缀来初步判断,比如 -ly 这种后缀,很大概率是一个副词,除此之外,一个相同的单词可以表示两种不同的词性,比如 book 既可以表示名词,也可以表示动词,所以到底这个词是什么词性需要结合前后文来具体判断。根据这个问题,我们可以使用 lstm 模型来进行预测,首先对于一个单词,可以将其看作一个序列,比如 apple 是由 a p p l e 这
转载
2024-04-02 10:58:56
63阅读
文章目录0 简介1 基于 Keras 用 LSTM 网络做时间序列预测2 长短记忆网络3 LSTM 网络结构和原理3.1 LSTM核心思想3.2 遗忘门3.3 输入门3.4 输出门4 基于LSTM的天气预测4.1 数据集4.2 预测示例5 基于LSTM的股票价格预测5.1 数据集5.2 实现代码6 lstm 预测航空旅客数目数据集预测代码7 最后 0 简介今天学长向大家介绍LSTM基础基于LST
转载
2023-11-30 11:37:27
226阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。 它可以是秒、分钟、小时、天、周、月、年。 未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,
转载
2023-08-12 20:12:01
22阅读
目录I. 前言II. 原理InputsOutputsbatch_first输出提取III. 训练和预测IV. 源码及数据 I. 前言前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。II. 原理关于LSTM的输入输出在深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中已经有过详细叙述。关于nn.LSTM的参数,官方文档给出的解释为: 总共有七个参
转载
2023-08-01 20:24:33
612阅读
1. LSTM 网络基本原理
2. 使用 Python 包 torch 实现网络构建、训练与验证
使用Python构建LSTM网络实现对时间序列的预测1. LSTM网络神经元结构 LSTM网络 神经元结构示意图 \(t\),LSTM网络神经元接收该时刻输入信息 \(x_t\),输出此时刻的隐藏状态 \(h_t\
转载
2023-06-26 15:24:47
814阅读
# LSTM预测 pytorch实现指南
## 流程图:
```mermaid
flowchart TD;
A[准备数据] --> B[构建LSTM模型];
B --> C[训练模型];
C --> D[预测结果];
```
## 步骤表格:
| 步骤 | 描述 |
|------|---------------|
| 1 | 准备数据
原创
2024-03-16 05:26:36
165阅读
# LSTM预测与PyTorch简介
长短期记忆网络(LSTM,Long Short-Term Memory)是一种特殊的递归神经网络,能够更好地处理和预测序列数据,尤其是时间序列。LSTM通过其独特的门控机制,能够记住较长时间序列的信息,并在数据的长期依赖性问题中表现优异。本篇文章将介绍如何在PyTorch中实现LSTM的预测,并给出一个简单的代码示例。
## LSTM的基本原理
LSTM
时间: 2022年4月1日内容:学习MM SegmentationMM Segmentation 介绍和理解MM Segmentation 利用注册器和配置文件,实现了 可拓展性 和 易用性。 它是一个封装了许多语义分割深度神经网络的框架,下载好之后是一个project,放入自己的数据集,或者利用官网(链接在下方)并选择深度神经网络,就可以实现各种语义分割模型。注册器:Dataset、Pipeli
这个系列前面的文章我们学会了使用全连接层来做简单的回归任务,但是在现实情况里,我们不仅需要做回归,可能还需要做预测工作。同时,我们的数据可能在时空上有着联系,但是简单的全连接层并不能满足我们的需求,所以我们在这篇文章里使用CNN和LSTM来对时间上有联系的数据来进行学习,同时来实现预测的功能。1.数据集:使用的是kaggle上一个公开的气象数据集(CSV)有需要的可以去kaggle下载,也可以在评
转载
2024-06-27 06:32:56
926阅读
首先,我们需要准备数据。对于剩余寿命预测问题,我们需要有一些历史数据来训练我们的模型,并且需要一些测试数据来验证模型的性能。假设我们有一个包含多个传感器读数的数据集,我们可以将其转化为一个序列预测问题。具体来说,我们可以使用前一段时间的传感器读数来预测未来一段时间内设备的剩余寿命。我们假设我们的数据集中包含了 N 个序列,每个序列由 T 个时间步长的传感器读
转载
2023-10-24 05:52:32
176阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。它可以是秒、分钟、小时、天、周、月、年。未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,只有
转载
2023-10-05 11:05:22
138阅读
1. 项目地址多层LSTM项目2. 项目数据使用text8.zip Linux下下载指令curl http://mattmahoney.net/dc/text8.zip > text8.zip3. 命令行运行指令python3.5 ptb_word_lm.py --data_path=simple-examples/data/4. 程序入口项目由ptb_word_lm.py文件中第526-5
转载
2023-10-15 08:21:33
154阅读
为了解决传统RNN无法长时依赖问题,RNN的两个变体LSTM和GRU被引入。LSTMLong Short Term Memory,称为长短期记忆网络,意思就是长的短时记忆,其解决的仍然是短时记忆问题,这种短时记忆比较长,能一定程度上解决长时依赖。 上图为LSTM的抽象结构,LSTM由3个门来控制,分别是输入门、遗忘门和输出门。输入门控制网络的输入,遗忘门控制着记忆单元,输出门控制着网络的输出。最为
转载
2023-09-17 11:57:46
83阅读
Pytorch中的nn.LSTMPytorch中LSTM总共有7个参数,前面3个是必须输入的input_size – The number of expected features in the input xhidden_size – The number of features in the hidden state hnum_layers –
转载
2023-09-27 13:21:19
117阅读