Pytorch中的nn.LSTMPytorch中LSTM总共有7个参数,前面3个是必须输入的input_size – The number of expected features in the input xhidden_size – The number of features in the hidden state hnum_layers –
转载
2023-09-27 13:21:19
117阅读
# PyTorch LSTM 多变量预测温度
## 1. 引言
近年来,深度学习在各个领域中取得了巨大的成功,其中包括时间序列数据的预测。时间序列数据预测是指根据过去的观测结果来预测未来的数值。其中,LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),在时间序列数据预测中表现出色。本文将介绍如何使用PyTorch来实现一个基于LSTM的多变量预测温度模型
原创
2023-08-20 08:52:26
623阅读
时间序列数据,顾名思义是一种随时间变化的数据类型。例如,24小时时间段内的温度,一个月内各种产品的价格,一个特定公司一年的股票价格。高级的深度学习模型,如长短期记忆网络(LSTM),能够捕捉时间序列数据中的模式,因此可以用来预测数据的未来趋势。在本文中,您将看到如何使用LSTM算法使用时间序列数据进行未来预测。 Dataset and Problem Definition我们将使用的数据
转载
2023-07-17 13:47:35
24阅读
前言:本例使用的是一个天气时间序列数据集,由德国耶拿的马克思普朗克生物地球化学研究所的气象站记录,这个例子作为初学者必看的例子之一,在这个数据集中,每十分钟记录14个不同的量(比如风向、湿度等),其中包含多年的记录。最原始的数据可以追溯到2003年,我们利用此数据构建模型,输入最近的一些数据,比如几天的,可以预测出24h之后的气温。数据集的样子如下:话不多说,直接上代码 一、代码impo
转载
2024-04-14 14:20:07
281阅读
时间序列是指在一段时间内发生的任何可量化的度量或事件。尽管这听起来微不足道,但几乎任何东西都可以被认为是时间序列。一个月里你每小时的平均心率,一年里一只的日收盘价,一年里某个城市每周发生的交通事故数。在任何一段时间段内记录这些信息都被认为是一个时间序列。对于这些例子中的每一个,都有事件发生的频率(每天、每周、每小时等)和事件发生的时间长度(一个月、一年、一天等)。在本教程中,我们将使用 PyT
转载
2023-11-01 13:43:59
36阅读
? 本文为?365天深度学习训练营 中的学习记录博客? 参考文章:第R2周:LSTM-火灾温度预测(训练营内部可读)? 作者:K同学啊 任务说明:数据集中提供了火灾温度(Tem1)、一氧化碳浓度(CO 1)、烟雾浓度(Soot 1)随着时间变化数据,我们需要根据这些数据对未来某一时刻的火灾温度做出预测(本次任务仅供学习)?要求: 1了解LSTM是什么,并使用其构建一个完整的程序
转载
2023-12-27 18:58:02
148阅读
文章目录0 简介1 基于 Keras 用 LSTM 网络做时间序列预测2 长短记忆网络3 LSTM 网络结构和原理3.1 LSTM核心思想3.2 遗忘门3.3 输入门3.4 输出门4 基于LSTM的天气预测4.1 数据集4.2 预测示例5 基于LSTM的股票价格预测5.1 数据集5.2 实现代码6 lstm 预测航空旅客数目数据集预测代码7 最后 0 简介今天学长向大家介绍LSTM基础基于LST
转载
2023-11-30 11:37:27
226阅读
对于一个单词,会有这不同的词性,首先能够根据一个单词的后缀来初步判断,比如 -ly 这种后缀,很大概率是一个副词,除此之外,一个相同的单词可以表示两种不同的词性,比如 book 既可以表示名词,也可以表示动词,所以到底这个词是什么词性需要结合前后文来具体判断。根据这个问题,我们可以使用 lstm 模型来进行预测,首先对于一个单词,可以将其看作一个序列,比如 apple 是由 a p p l e 这
转载
2024-04-02 10:58:56
63阅读
目录I. 前言II. 原理InputsOutputsbatch_first输出提取III. 训练和预测IV. 源码及数据 I. 前言前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。II. 原理关于LSTM的输入输出在深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中已经有过详细叙述。关于nn.LSTM的参数,官方文档给出的解释为: 总共有七个参
转载
2023-08-01 20:24:33
606阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。 它可以是秒、分钟、小时、天、周、月、年。 未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,
转载
2023-08-12 20:12:01
22阅读
1. LSTM 网络基本原理
2. 使用 Python 包 torch 实现网络构建、训练与验证
使用Python构建LSTM网络实现对时间序列的预测1. LSTM网络神经元结构 LSTM网络 神经元结构示意图 \(t\),LSTM网络神经元接收该时刻输入信息 \(x_t\),输出此时刻的隐藏状态 \(h_t\
转载
2023-06-26 15:24:47
814阅读
# LSTM预测与PyTorch简介
长短期记忆网络(LSTM,Long Short-Term Memory)是一种特殊的递归神经网络,能够更好地处理和预测序列数据,尤其是时间序列。LSTM通过其独特的门控机制,能够记住较长时间序列的信息,并在数据的长期依赖性问题中表现优异。本篇文章将介绍如何在PyTorch中实现LSTM的预测,并给出一个简单的代码示例。
## LSTM的基本原理
LSTM
这个系列前面的文章我们学会了使用全连接层来做简单的回归任务,但是在现实情况里,我们不仅需要做回归,可能还需要做预测工作。同时,我们的数据可能在时空上有着联系,但是简单的全连接层并不能满足我们的需求,所以我们在这篇文章里使用CNN和LSTM来对时间上有联系的数据来进行学习,同时来实现预测的功能。1.数据集:使用的是kaggle上一个公开的气象数据集(CSV)有需要的可以去kaggle下载,也可以在评
转载
2024-06-27 06:32:56
926阅读
# LSTM预测 pytorch实现指南
## 流程图:
```mermaid
flowchart TD;
A[准备数据] --> B[构建LSTM模型];
B --> C[训练模型];
C --> D[预测结果];
```
## 步骤表格:
| 步骤 | 描述 |
|------|---------------|
| 1 | 准备数据
原创
2024-03-16 05:26:36
165阅读
# PyTorch 温度预测
## 介绍
温度预测是气象学中的一个重要问题。通过预测未来的温度变化,我们可以更好地理解气候模式,制定更准确的天气预报,以及做出更合理的决策。PyTorch作为一个强大的深度学习框架,可以帮助我们解决温度预测问题。
在本文中,我们将使用PyTorch来创建一个简单的温度预测模型。我们将使用一个包含历史温度数据的数据集,训练一个循环神经网络(RNN)模型,然后使用
原创
2023-11-17 08:51:03
103阅读
首先,我们需要准备数据。对于剩余寿命预测问题,我们需要有一些历史数据来训练我们的模型,并且需要一些测试数据来验证模型的性能。假设我们有一个包含多个传感器读数的数据集,我们可以将其转化为一个序列预测问题。具体来说,我们可以使用前一段时间的传感器读数来预测未来一段时间内设备的剩余寿命。我们假设我们的数据集中包含了 N 个序列,每个序列由 T 个时间步长的传感器读
转载
2023-10-24 05:52:32
176阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。它可以是秒、分钟、小时、天、周、月、年。未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,只有
转载
2023-10-05 11:05:22
138阅读
1. 项目地址多层LSTM项目2. 项目数据使用text8.zip Linux下下载指令curl http://mattmahoney.net/dc/text8.zip > text8.zip3. 命令行运行指令python3.5 ptb_word_lm.py --data_path=simple-examples/data/4. 程序入口项目由ptb_word_lm.py文件中第526-5
转载
2023-10-15 08:21:33
154阅读
为了解决传统RNN无法长时依赖问题,RNN的两个变体LSTM和GRU被引入。LSTMLong Short Term Memory,称为长短期记忆网络,意思就是长的短时记忆,其解决的仍然是短时记忆问题,这种短时记忆比较长,能一定程度上解决长时依赖。 上图为LSTM的抽象结构,LSTM由3个门来控制,分别是输入门、遗忘门和输出门。输入门控制网络的输入,遗忘门控制着记忆单元,输出门控制着网络的输出。最为
转载
2023-09-17 11:57:46
80阅读
本节将介绍另一种常用的门控循环神经网络:长短期记忆(long short-term memory,LSTM)。它 比门控循环单元的结构稍微复杂一点。1.1、数据集和问题定义import torch
import torch.nn as nn
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib
转载
2024-06-07 08:31:38
174阅读