(BETA) STATIC QUANTIZATION WITH EAGER MODE IN PYTORCHTutorials > (beta) Static Quantization with Eager Mode in PyTorchdoc :(beta) Static Quantization with Eager Mode in PyTorch — PyTorch Tutorials
转载
2024-01-20 05:05:28
87阅读
Pytorch 循环神经网络 RNN0. 环境介绍环境使用 Kaggle 里免费建立的 Notebook教程使用李沐老师的 动手学深度学习 网站和 视频讲解小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。1. 循环神经网络1.1 潜变量自回归模型 使用潜变量 1.2 RNN 更新隐藏状态: 去掉 就是普通的 MLP。 输出:1.3 基于 RNN 的语言模型1.4 困惑度(
转载
2023-08-23 13:03:05
209阅读
文章目录5 基于pytorch神经网络模型进行气温预测5.1 实现前的知识补充5.1.1 神经网络的表示5.1.2 隐藏层5.1.3 线性模型出错5.1.4 在网络中加入隐藏层5.1.5 激活函数5.1.6 小批量随机梯度下降5.2 实现的过程5.2.1 预处理5.2.2 搭建网络模型5.3 简化实现5.4 评估模型 5 基于pytorch神经网络模型进行气温预测在前面的学习中,我们已经有了一个
转载
2024-05-02 12:54:53
138阅读
说在前面: 这部分内容有不少更新指出: (1)这节课的内容跟上一节的递进关系,在于输入数据的维度,不再是原本的一维数值(标量 ) (2)而是升级为多维向量,这更符合多个自变量共同影响输出的实际应用场景; (3)想起了吴恩达课程中的房价预测模型,卧室数量、厨房数量等,可以绑定在一起构成向量的形式,作为输入。 详细过程: 本课程的主要任务是通过将原本简单的标量输入,升级为向量输
转载
2023-10-20 22:44:52
408阅读
仅仅是为了记录一下自己的学习过程,所有的代码和数据集均来自于互联网,也会放在我的Github上。数据集采用的是飞机航班的数据集,对其进行读取之后可视化效果如图,可以看到有着一些周期性的规律,非常适合于RNN这样的来进行预测1.导入相关的包导入相关的包,其中最后一行的Variable感觉可有可无,我给注释掉之后也能正常的运行,不知道有没有大佬可以赐教一下,不甚感激。import torch
impo
转载
2024-05-16 23:27:30
96阅读
看到网上一个个代码都要钱,自己写了个LSTM分享一下,新手写的代码,有问题轻喷。。。主程序,文件名随便 import torch
import time
import pandas as pd
import numpy as np
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from func
转载
2023-09-05 15:20:24
347阅读
点赞
目录I. 前言II. 数据处理III. LSTM模型IV. 训练和预测V. 源码及数据 I. 前言在前面的两篇文章PyTorch搭建LSTM实现时间序列预测(负荷预测)和PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)中,我们利用LSTM分别实现了单变量单步长时间序列预测和多变量单步长时间序列预测。本篇文章主要考虑用PyTorch搭建LSTM实现多变量多步长时间序列预测。II. 数据
转载
2023-08-07 21:17:16
217阅读
目录I. 前言II. seq2seqIII. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 I. 前言系列文章:深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)PyTorch搭建LSTM实现时间序列预测(负荷预测)PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测PyTorch搭建LSTM实现
转载
2023-09-29 15:06:30
355阅读
一、变量1、变量的定义:如果在程序中,需要把2个数据,或者多个数据进行求和的话,那么就需要把这些数据先存储起来,然后把它们累加起来即可,变量就是用来存东西的。2、在Python中,存储一个数据,需要一个叫做变量的东西示例:num1 = 100 num1就是一个变量,就好比一个小菜篮子。num2 = 87 num2也是一个变量。result = num1 + num2 #把num1和num2这两个"
转载
2023-11-06 20:28:27
47阅读
# TCN与PyTorch:时序数据建模的强大工具
随着深度学习技术的快速发展,时序数据处理变得愈发重要。的一种表现形式便是时序卷积网络(Temporal Convolutional Network,TCN)。在本文中,我们将探讨TCN的基本概念、应用场景,并展示如何使用PyTorch实现一个简单的TCN模型。我们还将包含类图和关系图,以便更好地理解其内部结构。
## 什么是TCN?
时序卷
原创
2024-10-23 05:12:56
455阅读
使用 LSTM 进行端到端时间序列预测的完整代码和详细解释。在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。 它可以是秒、分钟、小时、天、周、月、年。 未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对
转载
2023-10-11 20:27:07
8阅读
本文翻译自:How to test multiple variables against a value?I'm trying to make a function that will compare multiple variables to an integer and output a string of three letters. 我正在尝试制作一个将多个变量与一个整数进行比较并输出三个
转载
2024-09-10 11:28:05
35阅读
# PyTorch TCN: Time Series Forecasting with Temporal Convolutional Networks
## Introduction
Time series forecasting is an essential task in various domains such as finance, weather forecasting, and
原创
2023-08-26 14:16:10
228阅读
本文参加新星计划人工智能(Pytorch)赛道: 大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例。主要分类三个方面进行描述:Pytorch搭建神经网络的简单步骤、LSTM网络介绍、Pytorch搭建LSTM网络的代码实战目录一、Pytorch搭建神经网络的简单步骤二、LSTM网络三、Pytorch搭建LSTM网络的代码实
转载
2023-08-07 14:45:42
221阅读
链路预测是网络科学里面的一个经典任务,其目的是利用当前已获取的网络数据(包含结构信息和属性信息)来预测网络中会出现哪些新的连边。本文计划利用networkx包中的网络来进行链路预测,因为目前PyTorch Geometric包中封装的网络还不够多,而很多网络方便用networkx包生成或者处理。环境配置首先,安装一个工具包,DeepSNAP。这个包提供了networkx到PyTorch Geome
转载
2023-08-28 10:48:03
117阅读
前言实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别、机器翻译、手写体识别、序列数据分析(预测)等。 在实际应用中,RNN 在内部设计上存在一个严重的问题:由于网络一次只能处理一个时间步长,后一步必须等前一步处理完才能进行运算。这意味着 RNN 不能像 CNN 那样进行大规模并行处理,特别是在 RNN/LSTM 对文本进行双向处理时。这也意味着 RNN 极度地计
转载
2024-05-05 08:39:12
42阅读
TCN-Transformer+GRU多变量时间序列预测(Matlab)
原创
2024-10-08 14:10:40
133阅读
EI级 | Matlab实现TCN-GRU-MATT、TCN-GRU、TCN、GRU多变量时间序列预测对比
原创
精选
2024-03-04 14:18:12
175阅读
多维时序 | MATLAB实现CNN-LSTM-Attention多变量时间序列预测 目录多维时序 | MATLAB实现CNN-LSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果基本介绍MATLAB实现CNN-LSTM-Attention多变量时间序列预测,CNN-LSTM结合注意力机制多变量时间序列预测。模型描述Matlab实现CNN-LSTM-At
转载
2024-01-04 06:46:26
171阅读
目录I. 前言II. 单步滚动预测III. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 I. 前言在PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出中介绍了直接单输出的多步预测,本篇文章主要介绍单步滚动预测实现多步预测。II. 单步滚动预测比如前10个预测后3个:我们首先利用[1…10]预测[11’],然后利用[2…1
转载
2023-08-22 21:09:49
201阅读