使用的数据集Kaggle Cats and Dogs Dataset基于机器学习的动物图像分类处理基于机器学习的动物图像分类是一种利用机器学习算法和技术来自动识别和分类不同动物图像的方法。该方法可以通过训练一个机器学习模型来学习动物的特征和模式,并根据这些特征和模式来判断输入图像属于哪种动物。动物图像分类通常包括以下步骤:1.数据收集:收集包含不同动物类别的大量图像数据集,这些图像数据集应涵盖各
本文中的RNN泛指LSTM,GRU等等CNN中和RNN中batchSize的默认位置是不同的。 CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是position 1.在RNN中输入数据格式:对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显式的传入隐藏状态。torch.nn.RNN(
1、学习率设置策略Pytorch 已经实现了两种方法:「torch.optim.lr_scheduler.CyclicLR」和「torch.optim.lr_scheduler.OneCycleLR」。参考文档:https://pytorch.org/docs/stable/optim.html2、dataloader中使用多个worker和页锁定内存当使用 torch.utils.data.Da
转载 2023-08-05 21:24:02
320阅读
(1)kNN算法_手写识别实例——基于Python和NumPy函数库1、kNN算法简介kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算法之一,算法思想很简单:从训练样本集中选择k个与测试样本“距离”最近的样本,这k个样本中出现频率最高的类别即作为测试样本的类别。下面的简介选自wiki百科:http://zh.wikipedia.org/wiki/%E6%9
转载 2024-08-28 11:55:50
410阅读
1.KNN算法概述用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。2.KNN算法原理 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K
转载 2024-03-20 16:43:02
129阅读
KNN算法原理详解KNN算法1.1 解决监督学习中分类问题的一般步骤1.2 什么是消极(惰性)的学习方法2 首先从一个实例讲起3 KNN分类算法入门3.1.1算法综述3.1.2算法思想3.2 KNN三要素详解3.2.1 关于距离的衡量方法3.2.2 K值的选择问题3.2.3 分类决策的准则4 算法步骤详解4.1 KNN算法的步骤4.2 算法的优缺点5 补充:KDTree5.1 构造KD树的算法5
一、近 邻 算 法 (KNN)原理:  工 作 原 理 是 : 存 在 一 个 样 本 数据 集 合 , 也 称 作 训练 样 本 集 , 并 且 样 本 集 中 每 个 数 据 都 存 在 标 签 , 即 我 们 知 道 样 本 集 中 每 一 数 据与 所 属 分 类 的 对 应关系 。输 人 没 有 标 签 的 新 数 据 后 , 将 新 数 据 的 每 个 特 征 与
转载 2024-04-24 15:45:01
137阅读
作者:张俊红我的2020总结,戳图片,留言抽大奖大家好,我是老表~本篇介绍机器学习众多算法里面最基础也是最“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是最懒的吗?01|算法简介:KNN是英文k-nearest neighbor的缩写,表示K个最接近的点。该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于
# 使用 PyTorch 实现 KNN(K-Nearest Neighbors) KNN 是一种简单而有效的机器学习算法,它的原理是通过计算样本之间的距离来分类和回归。在这篇文章中,我们将一起学习如何在 PyTorch 中实现 KNN。我们将按步骤分解整个过程,并使用代码示例来深入理解每一个步骤。以下是整个流程的步骤概述: | 步骤 | 描述 |
原创 9月前
156阅读
# 使用 PyTorch 实现 KNN KNN(K-Nearest Neighbors)是一种简单且有效的分类算法。今天,我们将通过使用 PyTorch 来实现 KNN。本文将向你展示如何一步步实现 KNN,包括必要的代码和详细的注释。 ## 流程概述 以下是实现 KNN 的流程: | 步骤 | 描述 | | --
原创 2024-10-13 05:39:40
328阅读
# 实现 GCN KNN PyTorch ## 介绍 在这篇文章中,我将教你如何使用 PyTorch 实现 GCN(Graph Convolutional Network) KNN(K-Nearest Neighbors)模型。GCN 是一种用于图数据的半监督学习方法,它能够对节点进行分类和属性预测。KNN 则是一种无监督学习方法,用于寻找样本之间的相似性。通过结合这两种方法,我们可以进一步提升
原创 2023-08-30 15:00:31
403阅读
1.范数(norm)的简单介绍概念:距离的定义是一个宽泛的概念,只要满足非负,自反,三角不等式就可以称之为距离。范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。在数学上,范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,
K-最邻近算法总结 1.基本介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别...
转载 2013-11-10 22:26:00
137阅读
2评论
KNN是什么?邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。KNN是有监督学习KNN原理?如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别KNN实现步骤?1.数据预处理 2.采用合适的数据结构储存训练集和测试集 3.设定参数,如K 4.维护一个大小为k的的按距离由大
一、KNN算法 k-近邻算法,简单的说就是运用k算法采用测量不同特征值之间的距离的方法对日常生活中出现的人或物进行分类。它的算法核心思想就是:近朱者赤,近墨者黑。举个例子: 如图1.1所示假设坐标图中有3种颜色的图案,其中有一个白色的图案,要判断它应该属于哪种颜色,取决于它的坐标位置,经过计算它离红色图案的坐标位置更近,所以它最后属于红色类型。 图1.1 二
转载 2023-10-29 09:29:34
75阅读
1.k近邻算法k近邻学习(K-Nearest Neighbor,简称KNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其距离最近的k个样本,然后通过这k个邻居样本来进行预测,那种类别的邻居数量多,这个测试样本就被认为是那个类别的。与“投票”较为类似。下图是一个KNN的二分类问题的一个实列,可以看出k的取值不同,测试样本的分类也会不同,但都是基于他
转载 2024-04-04 18:57:39
280阅读
KNN算法是机器学习里面常用的一种分类算法,假设一个样本空间被分为几类,然后给定一个待分类所有的特征数据,通过计算距离该数据的最近的K个样本来判断这个数据属于哪一类。如果距离待分类属性最近的K个类大多数都属于某一个特定的类,那么这个待分类的数据也就属于这个类。 Contents    1. KNN算法介绍   2. KNN算法的C++实
原创 2023-05-31 14:58:09
140阅读
KNN算法:近朱者赤近墨者黑一个例子:KNN原理又一个例子:使用KNN预测鸢尾花类型1、数据加载2、加载训练数据与测试数据3、使用sklearn的KNN进行预测4、检查一下预测的正确率 一个例子:KNN原理设想一个场景在一个小镇上有两个小区,一个是高档小区,另一个是贫民区,两个小区中间有一条河流。某一天,这个小镇上新来了一户人家,在不接触这家人的情况下,你怎么判断新来的这家是不是富人呢?俗话说“
本文参考:常用数据挖掘算法总结及 Python 实现,机器学习实战,以及网友算法思路:  存在一个样本数据集,也称作训练样本集,并且样本中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本集中的数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本集中前k个最相似的数据,这就是k-
KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。那么什么是KNN算法呢,接下来我们就来介绍介绍吧。二.KNN算法介绍 KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些K
转载 2024-04-11 13:07:47
54阅读
  • 1
  • 2
  • 3
  • 4
  • 5