LDA全称为Latent Dirichlet Allocation,是现在文本分析中经常用到的也特别受欢迎的一种概率性主题模型。目前主要文本分类,同时在NLP领域也有十分重要的应用。LDA模型的常见用途LDA的作用就是根据每个文档的用词用句规律,找出文档背后隐藏的多个主题。简单来说,我们人类写文章都是根据主题来创作,而LDA就是根据已写好的文章来反推出主题。通过LDA可以摒弃其他信息,然后提取出重
转载
2023-05-23 15:14:57
1166阅读
最近在搞文本主题相关的东西,所以花了很多时间研究LDA主题模型。个人感觉这个模型应用广泛,但是数学原理相对复杂,涉及到的数学公式比较多。下面总结一下。传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。相对于文本相似,文本相似主要是根据字符串的匹配程度进行判断的,
转载
2024-04-25 18:43:44
102阅读
在数据挖掘与自然语言处理的领域,主题建模是一个重要的任务,而LDA(Latent Dirichlet Allocation)算法则是最流行的主题建模方法之一。通过主题分析,我们可以揭示文本数据中的潜在主题,从而为后续的数据分析和决策提供支持。接下来,我将以LDA的版本对比、迁移指南、兼容性处理、实战案例、性能优化和生态扩展等多个维度来记录处理“Python主题分析LDA”问题的过程。
## 版本
# LDA主题分析 python实现指南
## 介绍
LDA(Latent Dirichlet Allocation)是一种主题模型,用于发现文档集合中隐藏的主题结构。它可以帮助我们理解文本数据,并从中提取有用的信息。本文将指导你如何使用Python实现LDA主题分析。
## LDA主题分析流程
下面是实现LDA主题分析的基本步骤:
| 步骤 | 描述 |
| --- | --- |
| 1
原创
2023-07-23 06:28:23
426阅读
隐含狄利克雷分配(LDA,Latent Dirichlet Allocation)是一种主题模型(Topic Model,即从所收集的文档中推测主题)。 甚至可以说LDA模型现在已经成为了主题建模中的一个标准,是实践中最成功的主题模型之一。那么何谓“主题”呢?,就是诸如一篇文章、一段话、一个句子所表达的中心思想。不过从统计模型的角度来说, 我们是用一个特定的词频分布来刻画主题的,并认
转载
2024-04-29 17:37:15
163阅读
最近一段时间学习了主题模型,主要是plsa和lda,本来打算也写一下plsa的,不过发现网上有一篇非常好的博文就直接转载了(还是懒。。),然后就只写下lda吧。。lda的开源代码比较出名的一个是python的ariddell/lda,另一个是GibbsLDA++,这两个都大致浏览了一下。下面主要说下python版的。首先看下初始化部分的代码def _initialize(self, X):
转载
2023-10-13 23:47:41
168阅读
机器学习入门:主题模型1、实验描述本实验是关于主题模型LDA的,首先介绍了LDA的应用方面有哪些?然后通过以python编程方式调用LDA相关的API,实现对LDA自带数据集的文档主题的分析,并将最终结果可视化。实验时长:45分钟主要步骤:导入实验相关的包加载lda数据集观察数据样本利用特定的样本做测试创建LDA模型分析文档的主题分布计算对应主题的TOP N单词结果展示2、实验环境虚拟机数量:1系
转载
2023-10-08 15:06:31
143阅读
通俗理解LDA主题模型 原文: 0 前言 印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是因为这篇文档的前序铺垫太长(现在才意识到这些“铺垫”都是深刻理解LDA 的基础,但如果没有人帮助初学者
618购物狂欢节前后,网民较常搜索的关键词在微博、微信、新闻三大渠道的互联网数据表现,同时通过分析平台采集618相关媒体报道和消费者提及数据社交媒体指数趋势观察平台数据显示,5月30日起,网上关于618的讨论明显热烈起来。5月30日网上声量相关讨论的主贴有3130条,其中提及最多的是关于“零点,天猫打响618大战第一枪“、”天猫618掀价格战:大家电比京东贵我就赔!“内容的转发,从媒体源数据对比中
背景隐含狄利克雷分配(Latent Dirichlet Allocation)是一种主题模型即从所给文档中挖掘潜在主题。LDA的出现是为了解决类似TFIDF只能从词频衡量文档相似度,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的情形: 乔布斯、苹果。LDA通常用户语义挖掘,识别文档中潜在的主题信息。在主题模型中,主题表示一个概念、一个方面,表现为一系列相关的单词,是这些单词的条件概率
转载
2024-03-25 20:05:47
148阅读
今天晚上看了lda算法的原理,深感自己知识的缺乏啊(Dirichlet分布、多项分布、图模型、Gibbs抽样)。这也让我深感惭愧,早就意识到自己数学知识的缺乏,但是一直没有补一下。 好吧,简单来总结一下现在对lda的理解(还有很多的地方不理解)。 1、用途: 判断两个文档的关联程度使用的方法是查看两个
转载
2024-05-09 16:29:53
70阅读
背景:一篇文档可以包含多个主题,所以会有主题分布这个概率. 可以这么理解一篇文章的生成:先以一定的概率选取某个主题,然后再以一定的概率选取该主题下的某个词,不断重复这两步,直到完成整个文档。**LDA 解决的问题就是,分析给定的一篇文章都有什么主题,每个主题出现的占比大小是多少。**LDA 对短文本的主题分类效果比较差。从宏观上来看,在 LDA 模型中,以 topic 作为中间层,问题可以用如下形
转载
2023-12-27 12:56:10
132阅读
(一)LDA作用
传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。
举个例子,有两个句子分别如下:
转载
2024-01-16 11:27:39
61阅读
语义透镜顾客满意度和关注点我们对于评价数据进行LDA建模,就是从语料库中挖掘出不同主题并进行分析,换言之,LDA提供了一种较为方便地量化研究主题的机器学习方法。我们使用最大似然估计进行最优化主题个数的选取。当主题个数定为20的时候,似然估计数最大,即留言板数据分为20个主题的可能性比较大。将模型生成的20个主题中的高频词取出。图表1根据各个主题的高频关键词,大概可以将顾客关注点分成5个部分:商家品
转载
2023-09-15 22:18:37
788阅读
LDA(Latent dirichlet allocation)是有Blei于2003年提出的三层贝叶斯主题模型,通过无监督的学习方法发现文本中隐含的主题信息,目的是要以无指导学习的方法从文本中发现隐含的语义维度-即“Topic”或者“Concept”。隐性语义分析的实质是要利用文本中词项(term)的共现特征来发现文本的Topic结构,这种方法不需要任何关于文本的背景知识。文本的隐性语义表示可以
转载
2023-06-15 09:48:55
664阅读
目录LDA主题模型1.LDA主题模型原理2.LDA主题模型推演过程3.sklearn实现LDA主题模型(实战)3.1数据集介绍3.2导入数据3.3分词处理 3.4文本向量化3.5构建LDA模型3.6LDA模型可视化 3.7困惑度 LDA主题模型 1.LDA主题模型原理 其实
转载
2024-04-04 08:40:04
60阅读
LDA主题模型基本原理LSA(Latent semantic analysis,隐性语义分析)、pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Latent Dirichlet allocation,隐狄利克雷分配)这三种模型都可以归类到话题模型(Topic model,或称为主题模型)中。相对于比较简单的向量空间模型,主题模型
转载
2024-03-14 14:55:52
153阅读
LDA算法简介:LDA是一种基于贝叶斯思想的无监督的聚类算法,广泛用于文本聚类,文本分析,文本关键词等场景。具体的,算法 的输入是一个文档的集合D={d1, d2, d3, ... , dn},同时还需要主题Topic的类别数量m;然后会算法会将每一篇文档 di 在 所有Topic上的一个概率值p;这样每篇文档都会得到一个概率的集合di=(dp1,dp2,..., dpm), 表示文档di在m个t
转载
2024-03-19 17:09:32
163阅读
网易云评论进行LDA主题模型分析前言这个项目是在学校参加竞赛下与另一个同学一起做的,我负责的是对评论进行LDA主题模型的分析。写这篇文章是想记录一下学习过程,有什么地方描述的不对还请大家多多指教,一起进步。在此之前,也是在网上学习了一些关于LDA主题模型的知识。下面就看看如何通过Python将数据进行 LDA 主题提取。什么是LDA主题模型,它可以用来做什么?我想大家都很好奇LDA主题模型是什么,
转载
2024-05-13 09:32:00
62阅读
前言:本文用到的方法叫做主题建模(topic model)或主题抽取(topic extraction),在机器学习的分类中,它属于非监督学习(unsupervised machine learning)。它是文本挖掘中常用的主题模型,用来从大量文档中提取出最能表达各个主题的一些关键词。 主题模型定义(维基百科):在机器学习和自然语言处理等领域是用来在一系列文档中发现抽象主题的一种统计模型。主题
转载
2024-02-22 15:41:03
146阅读