通俗理解LDA主题模型   原文:  0 前言    印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是因为这篇文档的前序铺垫太长(现在才意识到这些“铺垫”都是深刻理解LDA 的基础,但如果没有人帮助初学者
最近在搞文本主题相关的东西,所以花了很多时间研究LDA主题模型。个人感觉这个模型应用广泛,但是数学原理相对复杂,涉及到的数学公式比较多。下面总结一下。传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。相对于文本相似,文本相似主要是根据字符串的匹配程度进行判断的,
LDA 主题模型LDA的应用方向信息提取和搜索文档分类/聚类、文章摘要、社区挖掘基于内容的图像聚类、目标识别生物信息数据的应用基础函数LDA基本函数LDA涉及的问题共轭先验分布Dirichlet分布LDA模型:Gibbs采样算法学习参数共轭先验分布在贝叶斯概率理论中,如果后验概率p(θ|x)和后验概率p(θ)满足同样的分布律,那么,先验分布和后验分布被叫做共轭分布,同时先验分布叫做似然函数的共轭先
转载 2024-05-07 23:34:07
32阅读
  隐含狄利克雷分配(LDA,Latent Dirichlet Allocation)是一种主题模型(Topic Model,即从所收集的文档中推测主题)。 甚至可以说LDA模型现在已经成为了主题建模中的一个标准,是实践中最成功的主题模型之一。那么何谓“主题”呢?,就是诸如一篇文章、一段话、一个句子所表达的中心思想。不过从统计模型的角度来说, 我们是用一个特定的词频分布来刻画主题的,并认
转载 2024-04-29 17:37:15
163阅读
LDA全称为Latent Dirichlet Allocation,是现在文本分析中经常用到的也特别受欢迎的一种概率性主题模型。目前主要文本分类,同时在NLP领域也有十分重要的应用。LDA模型的常见用途LDA的作用就是根据每个文档的用词用句规律,找出文档背后隐藏的多个主题。简单来说,我们人类写文章都是根据主题来创作,而LDA就是根据已写好的文章来反推出主题。通过LDA可以摒弃其他信息,然后提取出重
转载 2023-05-23 15:14:57
1166阅读
主题模型历史: Papadimitriou、Raghavan、Tamaki和Vempala在1998年发表的一篇论文中提出了潜在语义索引。1999年,Thomas Hofmann又在此基础上,提出了概率性潜在语义索引(Probabilistic Latent Semantic Indexing,简称PLSI)。 隐含狄利克雷分配LDA可能是最常见的主题模型,是一般化的PLSI,由Blei, Da
1 关于主题模型使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版。隐含狄利克雷分布简称LDA(latent dirichlet allocation),是主题模型(topic model)的一种,由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出。 主题模型属于聚类方法,是一种无监督的学习方法。与通常的tf-id
目录什么是LDA主题模型背景知识贝叶斯理论gamma函数多个分布博鲁尼分布二项分布多项分布beta分布Dirichlet 分布开始了解LDAPython建模 什么是LDA主题模型首先说明一下什么是主题模型。这里的主题模型是把一份份不同的文本内容通过某种方式来找到这些文本对应的主题。打个比方:我有一堆新闻类文档,但我想将这对文档进行主题分类。到底是娱乐?军事?政治?等主题。这时候就使用到主题模型。
1. LDA模型是什么LDA可以分为以下5个步骤:一个函数:gamma函数。四个分布:二项分布、多项分布、beta分布、Dirichlet分布。一个概念和一个理念:共轭先验和贝叶斯框架。两个模型:pLSA、LDA。一个采样:Gibbs采样关于LDA有两种含义,一种是线性判别分析(Linear Discriminant Analysis),一种是概率主题模型:隐含狄利克雷分布(Latent Diri
在数据挖掘与自然语言处理的领域,主题建模是一个重要的任务,而LDA(Latent Dirichlet Allocation)算法则是最流行的主题建模方法之一。通过主题分析,我们可以揭示文本数据中的潜在主题,从而为后续的数据分析和决策提供支持。接下来,我将以LDA的版本对比、迁移指南、兼容性处理、实战案例、性能优化和生态扩展等多个维度来记录处理“Python主题分析LDA”问题的过程。 ## 版本
原创 6月前
25阅读
# LDA主题分析 python实现指南 ## 介绍 LDA(Latent Dirichlet Allocation)是一种主题模型,用于发现文档集合中隐藏的主题结构。它可以帮助我们理解文本数据,并从中提取有用的信息。本文将指导你如何使用Python实现LDA主题分析。 ## LDA主题分析流程 下面是实现LDA主题分析的基本步骤: | 步骤 | 描述 | | --- | --- | | 1
原创 2023-07-23 06:28:23
429阅读
618购物狂欢节前后,网民较常搜索的关键词在微博、微信、新闻三大渠道的互联网数据表现,同时通过分析平台采集618相关媒体报道和消费者提及数据社交媒体指数趋势观察平台数据显示,5月30日起,网上关于618的讨论明显热烈起来。5月30日网上声量相关讨论的主贴有3130条,其中提及最多的是关于“零点,天猫打响618大战第一枪“、”天猫618掀价格战:大家电比京东贵我就赔!“内容的转发,从媒体源数据对比中
   今天晚上看了lda算法的原理,深感自己知识的缺乏啊(Dirichlet分布、多项分布、图模型、Gibbs抽样)。这也让我深感惭愧,早就意识到自己数学知识的缺乏,但是一直没有补一下。   好吧,简单来总结一下现在对lda的理解(还有很多的地方不理解)。   1、用途:   判断两个文档的关联程度使用的方法是查看两个
背景隐含狄利克雷分配(Latent Dirichlet Allocation)是一种主题模型即从所给文档中挖掘潜在主题LDA的出现是为了解决类似TFIDF只能从词频衡量文档相似度,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的情形: 乔布斯、苹果。LDA通常用户语义挖掘,识别文档中潜在的主题信息。在主题模型中,主题表示一个概念、一个方面,表现为一系列相关的单词,是这些单词的条件概率
转载 2024-03-25 20:05:47
148阅读
最近我们被要求撰写关于主题模型LDA的研究报告,包括一些图形和统计输出。 介绍随着越来越多的数据被数字化,获取信息变得越来越困难。我们在本文中重点关注的一个示例是评估公司面临的不同风险领域。为此,我们参考公司提交给证券交易委员会的年度报告,其中提供了公司财务业绩的全面摘要[1],包括公司历史,组织结构,高管薪酬,股权,子公司和经审计的财务报表等信息,以及其他信息。相关视频:文本挖掘:主题模型(LD
主题模型LDA的应用 拿到这些topic后继续后面的这些应用怎么做呢: 除了推断出这些主题LDA还可以推断每篇文章在主题上的分布。例如,X文章大概有60%在讨论“空间探索”,30%关于“电脑”,10%关于其他主题。 这些主题分布可以有多种用途: 聚类: 主题是聚类中心,文章和多个类簇(主题)关联。聚类对整理和总结文章集合很有帮助。参看Blei教授和Lafferty教授对于Science杂志的
转载 2017-04-16 19:32:22
179阅读
前言  上文详细讲解了LDA主题模型,本篇将使用如下几种方式介绍,从整体上了解LDA模型的简单应用采用 lda 库,安装方式:pip install lda 采用 gensim 中的模块,安装方式:pip install gensim 采用 scikit-learn 中模块,安装方式:pip install scikit-learn 本篇代码可见:Github一、lda 库中的 LDA lda A
转载 2024-01-02 11:48:18
361阅读
目录前言课题背景和意义实现技术思路一、算法理论基础1.1 情感分析1.2 LDA模型二、 数据集三、实验及结果分析3.1 实验环境搭建3.2 模型训练最后前言    ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别
LDA主题模型基本原理LSA(Latent semantic analysis,隐性语义分析)、pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Latent Dirichlet allocation,隐狄利克雷分配)这三种模型都可以归类到话题模型(Topic model,或称为主题模型)中。相对于比较简单的向量空间模型,主题模型
目录LDA主题模型1.LDA主题模型原理2.LDA主题模型推演过程3.sklearn实现LDA主题模型(实战)3.1数据集介绍3.2导入数据3.3分词处理 3.4文本向量化3.5构建LDA模型3.6LDA模型可视化 3.7困惑度 LDA主题模型 1.LDA主题模型原理         其实
  • 1
  • 2
  • 3
  • 4
  • 5