本文完成程序及测试数据集详细见:https://github.com/HanXia001/k-means-python3-本文主要内容: 1.k-means解决的问题; 2.k-m
转载
2024-08-14 11:39:26
13阅读
主要参考 K-means 聚类算法及 python 代码实现 还有 《机器学习实战》 这本书,当然前面那个链接的也是参考这本书,懂原理,会用就行了。1、概述K-means 算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。说白了就是无监督的聚类,大家都是同
转载
2023-07-07 23:55:52
100阅读
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的
转载
2023-09-05 22:44:28
47阅读
本文主要内容:聚类算法的特点聚类算法样本间的属性(包括,有序属性、无序属性)度量标准聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类、密度聚类K均值聚类算法的python实现,以及聚类算法与EM最大算法的关系参考引用先上一张gif的k均值聚类算法动态图片,让大家对算法有个感性认识:其中:N=200代表有200个样本,不同的颜色代表不同的簇(其中 3种颜色为3个簇),星星代表每个簇的簇心。算
转载
2023-08-01 20:07:57
158阅读
聚类算法原理简介(EM)EM聚类原理如其名称所示,EM聚类主要是两个步骤,一是期望步骤(Expectation);二是最大化步骤(Maximization)。thinking:一个西瓜分给两个人,怎么才能切的合理?第一步是随机切一刀,观察预期,这就是期望步骤(Expectation);第二步是如果存在偏差,需要重新评估如何切,即重新评估参数,这就是最大化步骤(Maximization)。 EM算法
转载
2024-05-30 09:59:15
75阅读
作为无监督学习的一个重要方法,聚类的思想就是把属性相似的样本归到一类。对于每一个数据点,我们可以把它归到一个特定的类,同时每个类之间的所有数据点在某种程度上有着共性,比如空间位置接近等特性。多用于数据挖掘、数据分析等一些领域。 下面简
转载
2024-04-06 13:38:48
21阅读
一、聚类与EM算法 1、以聚类为例讲清楚EM首先将EM算法应用于概率模型。 EM算法是概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量 -- 假设聚类模型的输出y=f(θ,z,x) -- θ是模型参数,决定x的分布 -- x是输入数据,是可观察变量 &nb
转载
2024-08-16 13:00:17
69阅读
聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:聚类是在输入数据的特征空间中查找自然组的无监督问题。对于所有数据集,有许
转载
2023-06-16 14:35:25
188阅读
1、问题导入假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置。事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的“某个地址”,然后步行到每个组内的地址。那么,如何确定这些组,如何确定这些组的“某个地址”?答案就是聚类。而本文所提供的k-means聚类分析方法就可以用
转载
2023-07-06 14:19:42
350阅读
聚类算法原理简介聚类概念聚类涉及到数据点的分组,给定一组数据点,我们可以根据聚类算法将每个数据点划分为一个特定的组。同一组中的数据点应该具有相似的属性或特征,不同组中的数据点应该具有高度不同的属性或特征。聚类是一种无监督机器学习的方法(没有标签),或许多领域中常用的统计数据分析技术有时候作为监督学习中稀疏特征的预处理,有时候可以作为异常值检测。 应用场景:新闻聚类、用户购买模型(交叉销售)、图像与
转载
2024-03-28 13:53:14
56阅读
本例中,使用用户注册时间(注册天数reg_length)、活跃(最近活跃间隔天数rec_act_length、近7日活跃天数act_days)和变现(近7日日均广告点击量ad_pd、近7日日均阅读量read_pd)三个维度进行聚类。库导入在这里用到了os用来处理路径,numpy、pandas都是数据分析处理的常用库,matplotlib作简单的图形看指标分布,重头戏就是sklearn啦,用来完成我
转载
2024-03-04 01:25:34
29阅读
python实现k-means聚类算法不调包这里是为了记录机器学习作业写的代码,只要放入二维数据即可运行代码基本思想 举个例子: 1.假如有5个点要实现聚类:a,b,c,d,e 2.我们要选定聚几类(假设是聚两类)k=2 3.那么我们就随机选定5个点的2个点作为簇心 4.然后将每个点和簇心的欧式距离比较一遍,谁离哪个点进谁就属于哪一类 比如:(b点到A簇心的距离小于到B簇心的距离,则b属于A类)
转载
2023-10-20 23:37:39
39阅读
聚类是机器学习、数据挖掘相关的一类很常见的问题。关于聚类算法的介绍这里就不多写了,因为无论是教科书还是网络上都有太多的资料了。这里,用一个《Programming Collective Intelligence》中的聚类例子,写几个经典聚类算法的实现,分别是hierachiclaCluster、kmeans、kmedoids。 另外,最
转载
2024-08-12 14:18:54
14阅读
文章目录DBSCAN聚类算法基本思想基本概念工作流程参数选择DBSCAN的优劣势代码分析==Matplotlib Pyplot====make_blobs====StandardScaler====axes类使用====plt.cm.Spectral颜色分配====python numpy 中linspace函数====enumerate()函数====plt.scatter()绘制散点图==整
转载
2023-12-10 20:28:11
81阅读
层次聚类(Hierarchical Clustering)一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计算方法常用的有三种:1.单连接聚类(Single-linkage cl
转载
2023-08-18 22:27:43
163阅读
认识DBSCANDBSCAN全称Density-Based Spatial Clustering of Applications with Noise,翻译过来就是基于密度的噪声应用空间聚类。一句话形容就是,DBSCAN基于密度,它可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的聚类簇。DBSCAN算法基于点的密度而不是点之间的距离,此外它也不要求我们指定集群的数量,不仅有
转载
2024-06-12 22:05:17
112阅读
聚类是机器学习中一种方法,常用用于处理数据分组的问题。给定一组数据,利用聚类算法将每一个数据点分批到一个特定的组。这就要求对于同一组的数据点,应该具有相同的性质(特征);对于不同组的数据点,在性质(特征)上应该有显著的区别。聚类算法数据无监督学习(unsupervised learning),常用于处理静态数据的分类问题。K-MeansK-Means算法是一种简单的迭代性聚类算法,采用距离作为相似
转载
2024-06-04 05:04:50
196阅读
K-means算法介绍 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 算法过
转载
2023-06-19 20:07:34
209阅读
最近学习层次聚类算法,厚颜转载一篇博文。
参考:层次聚类算法的原理及实现Hierarchical Clustering层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。聚类模式: 1)自底向上型(agglomerative) 2)自上向
转载
2023-06-21 21:54:15
191阅读
scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。还包括了特征提取,数据处理和模型评估者三大模块。一,sklearn官方文档的内容和结构1.1 sklearn官方文档的内容 库的算法主要有四类:监督学习的:分类,回归,无监督学习的:聚类,降维。常用的回归:线性、决策树、SVM、KNN 集成回归:随机森林、Adaboost、GradientBoosting、
转载
2023-12-27 14:17:34
133阅读