或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多算法可供选择,对于所有情况,没有单一的最佳算法。相反,最好探索一系列算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级算法。完成本教程后,你将知道:是在输入数据的特征空间中查找自然组的无监督问题。对于所有数据集,有许
本例中,使用用户注册时间(注册天数reg_length)、活跃(最近活跃间隔天数rec_act_length、近7日活跃天数act_days)和变现(近7日日均广告点击量ad_pd、近7日日均阅读量read_pd)三个维度进行。库导入在这里用到了os用来处理路径,numpy、pandas都是数据分析处理的常用库,matplotlib作简单的图形看指标分布,重头戏就是sklearn啦,用来完成我
转载 2024-03-04 01:25:34
29阅读
本文完成程序及测试数据集详细见:https://github.com/HanXia001/k-means-python3-本文主要内容:                1.k-means解决的问题;                2.k-m
python实现k-means算法不调包这里是为了记录机器学习作业写的代码,只要放入二维数据即可运行代码基本思想 举个例子: 1.假如有5个点要实现:a,b,c,d,e 2.我们要选定聚几类(假设是)k=2 3.那么我们就随机选定5个点的2个点作为簇心 4.然后将每个点和簇心的欧式距离比较一遍,谁离哪个点进谁就属于哪一 比如:(b点到A簇心的距离小于到B簇心的距离,则b属于A
文章目录DBSCAN算法基本思想基本概念工作流程参数选择DBSCAN的优劣势代码分析==Matplotlib Pyplot====make_blobs====StandardScaler====axes使用====plt.cm.Spectral颜色分配====python numpy 中linspace函数====enumerate()函数====plt.scatter()绘制散点图==整
K-means算法介绍  K-means算法是很典型的基于距离的算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。                     算法
转载 2023-06-19 20:07:34
209阅读
在网上查看了些博客,感觉大家都对数学公式的解释的比较晦涩,下面我结合一个非常简单的示意图解释下他的数学公式,理解不到位的请留言。kmeans是一种算法下面是算法的描述给定训练样本是每一个,即每一个样本元素都是n维向量。为了便于理解在后面的示意图中采用二维的向量。step1:    随机选取k个质心点为step2:    重复下面过程直到手链&nb
层次(Hierarchical Clustering)一.概念  层次不需要指定聚的数目,首先它是将数据中的每个实例看作一个,然后将最相似的两个合并,该过程迭代计算只到剩下一个为止,由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在中每次迭代都将两个最近的进行合并,这个间的距离计算方法常用的有三种:1.单连接(Single-linkage cl
转载 2023-08-18 22:27:43
163阅读
 认识DBSCANDBSCAN全称Density-Based Spatial Clustering of Applications with Noise,翻译过来就是基于密度的噪声应用空间。一句话形容就是,DBSCAN基于密度,它可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的簇。DBSCAN算法基于点的密度而不是点之间的距离,此外它也不要求我们指定集群的数量,不仅有
转载 2024-06-12 22:05:17
112阅读
       作为无监督学习的一个重要方法,的思想就是把属性相似的样本归到一。对于每一个数据点,我们可以把它归到一个特定的,同时每个之间的所有数据点在某种程度上有着共性,比如空间位置接近等特性。多用于数据挖掘、数据分析等一些领域。       下面简
## Python介绍及示例代码 ### 引言 在机器学习和数据挖掘任务中,是一种常用的技术,用于将相似的数据点分组为多个簇(cluster)。Python作为一种流行的编程语言,提供了丰富的,可以帮助开发者轻松实现算法。本文将介绍几个常用的Python,并提供相应的示例代码,帮助读者深入了解和使用这些。 ### Scikit-learn Scikit-lear
原创 2023-08-28 07:57:26
173阅读
python 实现网格算法算法很多,包括基于划分的算法(如:kmeans),基于层次的算法(如:BIRCH),基于密度的算法(如:DBScan),基于网格的算法等等。基于划分和层次方法都无法发现非凸面形状的簇,真正能有效发现任意形状簇的算法是基于密度的算法,但基于密度的算法一般时间复杂度较高,1996年到2000年间,研究数据挖掘的学者们提出了大量基于网格的算法,网
 kmeans相信大家都已经很熟悉了。在Python里我们用kmeans通常调用Sklearn(当然自己写也很简单)。那么在Spark里能不能也直接使用sklean呢?目前来说直接使用有点困难,不过我看到spark-packages里已经有了,但还没有发布。不过没关系,PySpark里有ml,除了ml,还可以使用MLlib,这个在后期会写,也很方便。  1 fro
一、原理DBSCAN是一种基于密度的算法,这类密度算法一般假定类别可以通过样本分布的紧密程度决定。同一别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。 通过将紧密相连的样本划为一,这样就得到了一个类别。通过将所有各组紧密相连的样本划为各个不同的类别,则我们就得到了最终的所有类别结果。x1是核心对象,x2由x1密度直达,x3由x1密度可
尽管基于划分的算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇员组织成较大的簇,如主管、经理和职员;然后你可以进一步划分为较小的簇,例如,职员簇可以进一步划分为子簇:高级职员,一般职员和实习人员。所有的这些簇形成了层次结构,可以很容易地对各层次上的数据进行汇总或者特征化。另外,使用基于划分的算法(
1、问题导入假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置。事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的“某个地址”,然后步行到每个组内的地址。那么,如何确定这些组,如何确定这些组的“某个地址”?答案就是。而本文所提供的k-means聚类分析方法就可以用
转载 2023-07-06 14:19:42
350阅读
  题记:最近有幸参与了一个机器学习的项目,我的主要工作是帮助进行数据预处理,期间用Python实现了K-means算法,感觉收获很多特此记录下来和大伙儿分享。 一 机器学习项目的主要流程   机器学习项目的主要流程有五步:  1.数据提取  2.数据清洗  3.特征工程  4.训练模型  5.验证模型并优化  之前讲到的PYTHON爬虫可以算是第一步数据提取里面的内容,
目录1.导入原始数据集 2.首次计算中心点3.进行迭代循环,不断优化样本中心点和结果4.可视化通过手动书写k-means算法的逻辑实现(而非使用python内置的sklearn)不了解k-means算法的话可以先去了解以下这种算法的原理,下面就直接进入正题啦~1.导入原始数据集首先我们导入原始样本点,这里我们通过execl表记录原始数据,原始数据为假设为某班学术的平时
含义定义:,也叫做聚类分析,依据对象的属性,将相似的对象归位一,就是寻找发生数据之间内在联系的方法。 分类:从的类型来讲,一般有结构性、分散性、密度等。结构性是指,可以从上至下或者从下至上双向进行计算。从下至上是以单个对象开始,不断与周围相近的对象进行融合,最终将全部数据分成多种类别。而从上至下算法则恰恰相反,它先将全部数据当作一个整体,然后逐渐分小。在结构性
转载 2023-09-02 09:26:52
240阅读
Kmeans算法K均值算法需要输入待的数据和欲的簇数K,主要过程如下: 1.随机生成K个初始点作为质心 2.将数据集中的数据按照距离质心的远近分到各个簇中 3.将各个簇中的数据求平均值,作为新的质心,重复上一步,直到所有的簇不再改变import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotl
转载 2023-05-26 10:24:30
303阅读
  • 1
  • 2
  • 3
  • 4
  • 5