聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:聚类是在输入数据的特征空间中查找自然组的无监督问题。对于所有数据集,有许
转载
2023-06-16 14:35:25
188阅读
文章目录DBSCAN聚类算法基本思想基本概念工作流程参数选择DBSCAN的优劣势代码分析==Matplotlib Pyplot====make_blobs====StandardScaler====axes类使用====plt.cm.Spectral颜色分配====python numpy 中linspace函数====enumerate()函数====plt.scatter()绘制散点图==整
转载
2023-12-10 20:28:11
81阅读
层次聚类(Hierarchical Clustering)一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计算方法常用的有三种:1.单连接聚类(Single-linkage cl
转载
2023-08-18 22:27:43
163阅读
认识DBSCANDBSCAN全称Density-Based Spatial Clustering of Applications with Noise,翻译过来就是基于密度的噪声应用空间聚类。一句话形容就是,DBSCAN基于密度,它可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的聚类簇。DBSCAN算法基于点的密度而不是点之间的距离,此外它也不要求我们指定集群的数量,不仅有
转载
2024-06-12 22:05:17
112阅读
K-means算法介绍 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 算法过
转载
2023-06-19 20:07:34
209阅读
尽管基于划分的聚类算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇员组织成较大的簇,如主管、经理和职员;然后你可以进一步划分为较小的簇,例如,职员簇可以进一步划分为子簇:高级职员,一般职员和实习人员。所有的这些簇形成了层次结构,可以很容易地对各层次上的数据进行汇总或者特征化。另外,使用基于划分的聚类算法(
转载
2024-06-28 07:38:10
98阅读
Kmeans算法K均值算法需要输入待聚类的数据和欲聚类的簇数K,主要过程如下: 1.随机生成K个初始点作为质心 2.将数据集中的数据按照距离质心的远近分到各个簇中 3.将各个簇中的数据求平均值,作为新的质心,重复上一步,直到所有的簇不再改变import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotl
转载
2023-05-26 10:24:30
303阅读
一、原理DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。 通过将紧密相连的样本划为一类,这样就得到了一个聚类类别。通过将所有各组紧密相连的样本划为各个不同的类别,则我们就得到了最终的所有聚类类别结果。x1是核心对象,x2由x1密度直达,x3由x1密度可
转载
2023-09-06 20:24:32
182阅读
1、问题导入假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置。事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的“某个地址”,然后步行到每个组内的地址。那么,如何确定这些组,如何确定这些组的“某个地址”?答案就是聚类。而本文所提供的k-means聚类分析方法就可以用
转载
2023-07-06 14:19:42
350阅读
题记:最近有幸参与了一个机器学习的项目,我的主要工作是帮助进行数据预处理,期间用Python实现了K-means聚类算法,感觉收获很多特此记录下来和大伙儿分享。 一
机器学习项目的主要流程
机器学习项目的主要流程有五步: 1.数据提取 2.数据清洗 3.特征工程 4.训练模型 5.验证模型并优化 之前讲到的PYTHON爬虫可以算是第一步数据提取里面的内容,
转载
2024-08-30 21:20:39
42阅读
一、FCM算法简介1、模糊集理论L.A.Zadeh在1965年最早提出模糊集理论,在该理论中,针对传统的硬聚类算法其隶属度值非0即1的严格隶属关系,使用模糊集合理论,将原隶属度扩展为 0 到 1 之间的任意值,一个样本可以以不同的隶属度属于不同的簇集,从而极大提高了聚类算法对现实数据集的处理能力,由此模糊聚类出现在人们的视野。FCM算法广泛应用在数据挖掘、机器学习和计算机视觉与图像处理等方向。2、
转载
2023-11-15 20:02:11
253阅读
目录1.导入原始数据集 2.首次计算中心点3.进行迭代循环,不断优化样本中心点和聚类结果4.聚类可视化通过手动书写k-means聚类算法的逻辑实现聚类(而非使用python内置的sklearn)不了解k-means聚类算法的话可以先去了解以下这种算法的原理,下面就直接进入正题啦~1.导入原始数据集首先我们导入原始样本点,这里我们通过execl表记录原始数据,原始数据为假设为某班学术的平时
转载
2023-06-21 21:53:09
196阅读
聚类含义定义:聚类,也叫做聚类分析,依据对象的属性,将相似的对象归位一类。聚类,就是寻找发生数据之间内在联系的方法。 分类:从聚类的类型来讲,一般有结构性聚类、分散性聚类、密度聚类等。结构性聚类是指,可以从上至下或者从下至上双向进行计算。从下至上是以单个对象开始,不断与周围相近的对象进行融合,最终将全部数据分成多种类别。而从上至下算法则恰恰相反,它先将全部数据当作一个整体,然后逐渐分小。在结构性聚
转载
2023-09-02 09:26:52
240阅读
文章目录介绍KMeans()函数介绍实例导入相关包整理数据手肘法确定分类个数创建模型绘制结果分为3类的结果 作者:张双双 介绍sklearn.cluster模块提供了常用的非监督聚类算法。 该模块中每一个聚类算法都有两个变体: 一个是类(class)另一个是函数(function)。 类实现了fit方法来从训练数据中学习聚类;对类来说,训练过程得到的标签数据可以在属性 labels_ 中找到。
转载
2023-08-20 16:48:12
132阅读
KMeans聚类是一种常用的聚类方式,根据聚类所用到的聚类,还可以有很多变种。由于本人科研需求,发现sklearn中的KMeans函数没有我所需要的距离,故此重新实现了该算法。该算法不仅可以改变距离度量,还可以对样本或特征进行聚类。代码如下:from copy import deepcopy
import numpy as np
import pandas as pd
class myKMea
转载
2023-07-01 09:09:56
111阅读
文本聚类正所谓人以类聚,物以群分。人类获取并积累信息时常常需要整理数据,将相似的数据归档到一起。许多数据分析需求都归结为自动发现大量样本之间的相似性,并将其划分为不同的小组,这种根据相似性归档的任务称为聚类。基本概念聚类(cluster analysis)指的是将给定对象的集合划分为不同子集的过程,目标是使得每个子集内部的元素尽量相似,不同子集间的元素尽量不相似。这些子集又被称为簇(cluster
转载
2023-08-11 11:50:51
175阅读
聚类模型1、层次聚类2、原型聚类-K-means3、模型聚类-GMM4、EM算法-LDA主题模型5、密度聚类-DBSCAN6、图聚类-谱聚类四、EM算法一、EM算法 EM算法是一种迭代算法,用于带隐变量的概率模型参数的极大似然估计,是无监督学习中一大类算法求解的算法。EM算法每次迭代由两步组成,E步:假设隐变量和特征变量的联合分布P(x,z;θ)
P
转载
2023-07-24 14:19:05
70阅读
一、算法简介主流的聚类算法可以大致分成层次化聚类算法、划分式聚类算法(图论、KMean)、基于密度(DBSCAN)和网格的聚类算法和其他聚类算法。1.1 基本概念 层次聚类(Hierarchical Clustering)是一种聚类算法,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。聚类树的创建方法:自下而上
转载
2023-08-28 15:50:34
108阅读
算法原理K-means算法是最常用的一种聚类算法。算法的输入为一个样本集(或者称为点集),通过该算法可以将样本进行聚类,具有相似特征的样本聚为一类。针对每个点,计算这个点距离所有中心点最近的那个中心点,然后将这个点归为这个中心点代表的簇。一次迭代结束之后,针对每个簇类,重新计算中心点,然后针对每个点,重新寻找距离自己最近的中心点。如此循环,直到前后两次迭代的簇类没有变化。假设第一个图作为我们的原始
转载
2023-09-18 19:53:04
90阅读
一、聚类分析是无监督学习算法中最常用的一类聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性聚类与分类的不同在于,聚类所要求的划分的类是未知的。二、常见的聚类算法K-Means聚类层次聚类DBSCAN三、K-均值聚类算法1.定义 是一种迭代求解的聚类分析算法2.工作流程随机确定K个初始点作为质心,K为用户给定值为每个点找距其最近的质
转载
2024-05-29 09:22:39
23阅读