##句子相似计算的方法句子相似指的是两个句子之间相似的程度。用于NLP中对话系统、文本分类、信息检索、语义分析等。句子相似的计算方法主要分为基于统计的方法(莱文斯坦距离 | 编辑距离)和基于深度学习的方法。 基于统计的方法: BM25 TFIDF计算 TextRank算法中的句子相似性 基于深度学习的方法: 基于Word2Vec的余弦相似 DSSM(Deep Structured Sema
python 基于空间相似的K-means轨迹聚类数据读取定义不同轨迹间的距离计算距离矩阵k-means聚类 这里分享一些轨迹聚类的基本方法,涉及轨迹距离的定义、kmeans聚类应用。 需要使用的python库如下import pandas as pd import numpy as np import random import os import matplotlib.pyplot as
一、Dice相似系数Dice相似系数(Dice Similarity Coefficient, DSC) :是一种集合相似度度量指标,通常用来计算两个样本的相似。公式为:2 * |X ∩ Y| / (|X| + |Y|),其中 X 和 Y 是两个集合,|X| 表示集合 X 中的元素个数,∩表示两个集合的交集,即两个集合中共有的元素。   &nbs
上文提到文档排序函数是TR的核心。文档排序函数的实现有几种思路,其中一种是基于相似的模型。这种模型具体是用空间向量模型(Vector Space Model)实现。这篇文章就介绍VSM。VSM概念什么是VSM  VSM定义了两点。  第一,用词向量(term vector)来表示查询语句、表示文档。英文中的term vector,我们翻译为词向量。但是这里的“词”并不是指汉语中的一个词,具体含义
余弦相似在 Go 语言中的实现及应用探讨 余弦相似主要用于计算两个向量在向量空间中夹角的余弦值,广泛应用于文本相似计算、推荐系统等场景。在 Go 语言中实现余弦相似相对简单,以下是实现过程中有关版本对比、迁移指南、兼容性处理的复盘记录。 --- ### 1. 版本对比 | 版本 | 发布日期 | 特性 | | ---- | ------
# Python 相似计算 作为一名经验丰富的开发者,我很高兴能够教会你如何实现Python相似计算。在本文中,我将向你介绍整个实现过程,并提供每一步所需的代码和注释。 ## 实现流程 下面是实现Python相似计算的流程,我们将按照以下步骤进行: | 步骤 | 描述 | | ------ | ------ | | 1 | 导入所需的库 | | 2 | 准备数据 | | 3 | 数据
原创 2023-07-21 12:45:39
169阅读
        在前面的章节中,我们讲到了,对于一个垂域BOT的识别,会有分类模型、意图槽位模型来识别其对应的语义,但是这个一般是针对已经成熟的(即积累了一定数据的)场景才可以做的,对于以下的三种场景,这种做法就不适用了:场景冷启动,即一个新的场景,线上并没有对应场景的话术,一般对于冷启动问题我们都会采用模板匹配的方式
合并数据堆叠合并数据1、横向表堆叠 默认是取合集2、纵向堆叠concat函数 用列名称进行堆叠append函数主键合并数据主键合并重叠合并数据combine_first方法清洗数据检测与处理重复值1、记录重复方法一:利用list去重,自定义去重函数 方法二:利用集合(set)的元素是唯一的特性去重,如 方法三:利用numpy中的unique函数dish_set=set(dishes)常用方法: p
  一、结构相似性(structural similarity)      自然图像具有极高的结构性,表现在图像的像素间存在着很强的相关性,尤其是在空间相似的情况下。这些相关性在视觉场景中携带着关于物体结构的重要信息。我们假设人类视觉系统(HSV)主要从可视区域内获取结构信息。所以通过探测结构信息是否改变来感知图像失真的近似信息。&nbs
转载 2023-12-01 16:26:14
155阅读
第三次实验报告程序语言python 姓名: unicorn 学号: 12345678910 日期:2023/4/8一、 问题重述  给定两个程序,如何判断他们的相似性?二、 问题分析  先假设程序为C语言,不然题目太简洁了无从下手。C语言是比较基础的语言,我对C语言也比较了解,方便操作。然后还要假设比较的两个代码都是正确的,如果出现语法错误就没有规律可循了。   接着就是对源代码的预处理,要让文
目录方法总论1. 基于点匹配的方法2. 基于形状的方法方法总论衡量两条曲线与的相似,从传统特征工程的角度来讲,思路无外乎是设计不同的特征空间,将曲线映射到特征空间里面再进行相似的对比,这种相似的对比实际上就是在特征空间里面的欧式距离了。目前而言,常用的设计思路主要是出于两个方面设计,一个是从曲线上的点出发,一个是基于曲线上的某种特定形状。基于点匹配的方法这里面常用的是 时间翘曲函数(DTW)
锐腾君又来啦,这周双更是不是很意外很惊喜呀?锐腾君的闲话群已经创好了,以及锐腾君的个人专栏也创好了。(文末有小彩蛋不要错过哦) 锐腾君的数学杂谈zhuanlan.zhihu.com 引言:锐腾君一贯的作风是尽量地在初等范围内解释地通俗。但是有些地方好像不得不绕出来一下。于是本文的部分内容可能涉及到一些超出高中范围的知识以及一些锐腾君以前提到过得知识。我们默认读者已
        此示例说明如何测量信号的相似性。它将帮助回答诸如以下的问题:如何比较具有不同长度或不同采样率的信号?如何在测量中发现存在信号还是只存在噪声?两个信号是否相关?如何测量两个信号之间的延迟(以及如何对齐它们)?如何比较两个信号的频率成分?也可以在信号的不同段中寻找相似性以确定信号是否为周期性信号。&nbsp
向量空间模型(VSM:Vector space model)是最常用的相似计算模型,在自然语言处理中有着广泛的应用,这里简单介绍一下其在进行文档间相似计算时的原理。 假设共有十个词:w1,w2,......,w10,而共有三篇文章,d1,d2和d3。统计所得的词频表(杜撰的,为了便于演示用法)如下:  常用的向量空间公式见下图:   
概述总文本相似的计算方法主要分为三大类:一类是基于统计学的计算方法,此种方法在计算时没有考虑文本的句子结构信息和语义信息,计算的结果有时会与人对自然语言的理解不相符合;另一类是基于语义理解的计算方法,这种方法依赖于具有层次结构关系的语义词典,计算结果相对准确,与人对自然语言的理解较为符合;第三种类是基于深度学习的计算方法。1、基于向量空间模型的计算方法向量空间模型简称 VSM,是 Vector
JAVA与C#是当下使用率很高的高级语言中,最为相近的两门语言,在语言特性上非常相似,其差别比起其它流行的高级编程语言,例如c++、object-c、swift,也是最小的。在版本演进中,也存在相互借签、取长补短。java 语言是1996 年发布,而C#是微软公司在2000年6月发布的编程语言,所以C#对于初始版本java的不足之处做了一些完善。 作为一个开发者,在决定选择哪个语言时,更
转载 2023-07-21 23:15:24
104阅读
我们知道,对于个性化推荐来说,最核心、重要的算法是相关性度量算法。相关性从网站对象来分,可以针对商品、用户、旺铺、资讯、类目等等,从计算方式看可以分为文本相关性计算和行为相关性计算,具体的实现方法有很多种,最常用的方法有余弦夹角(Cosine)方法、杰卡德(Jaccard)方法等。Google对新闻的相似性计算采用的是余弦夹角,CBU的个性化推荐以往也主要采用此方法。从9月份开始,CBU个性化推荐
六、莱文斯坦编辑距离前边的几种距离计算方法都是针对相同长度的词项,莱文斯坦编辑距离可以计算两个长度不同的单词之间的距离;莱文斯坦编辑距离是通过添加、删除、或者将一个字符替换为另外一个字符所需的最小编辑次数;我们假设两个单词u、v的长度分别为i、j,则其可以分以下几种情况进行计算当有一个单词的长度为0的时候,则编辑距离为不为零的单词的长度;\[ld_{u,v}(i,j)=max(i,j)\; \;
论文介绍发表:2019,EMNLP论文题目:《Sentence-BERT:sentence embeddings using siaese BERT-networks》 论文地址:https://arxiv.org/abs/1908.10084 Github:https://github.com/UKPLab/sentence-transformers适用领域:句向量生成语义相似计算语义搜索无监
矩阵等价 定义:对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQ 充要条件:A和B的秩相等 两个矩阵对应着两个不同的线性变换,但是这两个线性变换作用在同一个向量上得到的结果是一样的,则这两个矩阵等价。 即两个不同空间的同一个线性变换之间是等价关系。(空间不同,基不同) 综上所述,矩阵等价包含矩阵相似和矩阵合同。矩阵相似和矩阵合同有交集部分,这部分的矩阵既相似又合同。例如,对称矩阵和由其特征值组成
  • 1
  • 2
  • 3
  • 4
  • 5