在前面的博客已经介绍过多元回归模型,现在这里粗略介绍如下python 实现案例1、选取数据执行代码#!usr/bin/env python#_*_ coding:utf-8 _*_import pandas as pdimport seaborn as snsimport matplotlib.pyplot as pltimport matplotlib as mpl #显示中文def mul
转载
2024-08-23 11:57:33
20阅读
文章目录0 前言1 课题简介2 预测算法2.1 Logistic回归模型2.2 基于动力学SEIR模型改进的SEITR模型2.3 LSTM神经网络模型3 预测效果3.1 Logistic回归模型3.2 SEITR模型3.3 LSTM神经网络模型4 结论5 最后 0 前言? 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学
转载
2024-01-09 14:23:00
139阅读
引文:决策树和基于规则的分类器都是积极学习方法(eager learner)的例子,因为一旦训练数据可用,他们就开始学习从输入属性到类标号的映射模型。一个相反的策略是推迟对训练数据的建模,直到需要分类测试样例时再进行。采用这种策略的技术被称为消极学习法(lazy learner)。最近邻分类器就是这样的一种方法。 注:KNN既可以用于分类,也可以用于回归。1.K最近邻分类器原理 首先给出一张图,根
转载
2024-07-20 14:29:12
27阅读
文章目录第5章:挖掘建模5.1、分类与预测5.1.1、实现过程5.1.2、常用的分类与预测算法5.1.3、回归分析5.1.4、决策树5.1.5、人工神经网络5.1.7、 Python分类预测模型特点5.2、聚类分析5.2.1、常用聚类分析算法5.2.2、 K-Means聚类算法5.2.3、聚类分析算法评价5.2.4、 Python主要聚类分析算法5.3、关联规则5.3.1、常用关联规则算法5.3
转载
2024-09-13 20:32:05
60阅读
一、模型的偏差与方差 所描述的事情本质上就是过拟合和欠拟合。偏差描述的是模型预测准不准,低偏差就是表示模型预测能力是不错的,就像图中的点都在靶心附近。方差描述的是模型稳不稳定,就像图中高方差的那些点,它们很分散,说明射击的成绩不稳定,波动很大。二、用学习曲线与验证曲线诊断模型一般来说,影响模型效果有三个重要的因素:数据量大小:训练样本数量越大,模型越不太容易出 现高方差(过拟合)(换句话说:训练样
转载
2024-01-03 11:10:59
103阅读
时间序列模型时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化;根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等RNN 和 LSTM
转载
2023-08-16 08:48:54
39阅读
构建预测模型的一般流程问题的日常语言表述->问题的数学语言重述重述问题、提取特征、训练算法、评估算法熟悉不同算法的输入数据结构:1.提取或组合预测所需的特征2.设定训练目标3.训练模型4.评估模型在训练数据上的性能表现机器学习:开发一个可以实际部署的模型的全部过程,包括对机器学习算法的理解和实际的操作通常,有非常切实的原因,导致某些算法被经常使用,了解背后的原因(1)构造一个机器学习问题审视
转载
2023-06-20 13:24:42
356阅读
1 基本定义数据平稳性的图判断:平稳时间序列的均值和方差都为常数,因此平稳时间序列的时序图应该围绕一条水平线上下波动,而且波动范围有界。(a)非平稳:有明显的周期性,趋势性平稳时间序列的序列值之间有短期相关性,则其表现特征是:自相关函数会很快地衰减到零附近(b)非平稳:自相关函数衰减到零附近的速度比较慢(c)非平稳:自相关图典型特征,三角对称关系(图1.13)(d)非平稳 :自相关系数衰
转载
2024-06-07 06:07:59
164阅读
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型。前言,对两分类和多分类的概念描述1,在LR(逻辑回归)中,如何进行多分类? 一般情况下,我们所认识的lr模型是一个二分类的模
转载
2023-09-25 17:37:41
161阅读
线性回归预测模型一元线性回归一元线性回归图一元线性回归参数多元线性回归分类变量的处理回归模型的假设性检验模型的显著性检验——F检验回归系数的显著性检验——t检验回归模型的诊断正态性检验直方图法PP图与QQ图Shapiro检验和K-S检验多重共线性检验线性相关检验独立性检验方差齐性BP检验 本文介绍的是线性回归方程的预测模型的学习笔记,将重点记录python的实现过程,对于线性模型的数学推导将不
转载
2023-09-25 10:19:56
248阅读
最近一阵子也是忙得飞起~没能及时更新内容望请谅解~最近也是在学习很多关于建模的内容,所以我觉得还是有必要对这些内容做一下梳理~这一篇文章作为开篇,也不打算写一些太过于深入的内容了,而是会讲一些框架性的东西,那些具体的花花叶叶后续再补上。数据建模其实在很多领域都有应用的,而大体的流程和套路都是类似的,大致分为7 part内容。part 1: 定义目标这个很好理解,就不展开了。part 2: 数据取样
转载
2024-10-24 07:40:06
62阅读
# Python模型预测
 方法可以将训练数据拟合到模型中。最后,你可以使用测试数
转载
2023-05-26 10:15:09
289阅读
介绍鉴于Python在过去几年中的兴起及其简洁性,对于数据科学领域的Python学家意义重大。这篇文章会用最容易的方式引导你更快地构建第一个预测模型。 出乎意料的简单!10分钟用python进行人工智能建立预测模型 揭秘预测建模的过程我一直专注于在模型构建的初始阶段投入质量时间,如假设生成/脑力激荡会议/讨论或理解领域。所有这些活动都帮助我解决问题,最终导致我设计出更强大的业务解决方案。
转载
2023-08-22 16:09:40
281阅读
MPC模型预测控制原理和代码一. 介绍模型预测控制(MPC)原理简要解释一下最优控制最优控制的目标是在一定的约束条件下达到最优的系统表现,那么要让系统达到最优表现,一般是通过定义损失函数J,通过最小化损失函数J来达到最优控制,对于单入单出(SISO)系统来说,损失函数J上面已经定义了,多入多出(MIMO)系统的损失函数和SISO系统的区别就是单入单出系统的损失函数里面的q和r是实数,MIMO系统的
转载
2023-10-14 18:36:10
33阅读