1. 应用范围高维数据因为其计算代价昂贵(纬度高计算必然昂贵)和建立索引结构的困难(空间索引结构往往面临着“维度灾”),因此有对其进行数据压缩的需求,即对高维数据进行降维,傅里叶变换变换都可以用来做这件事2. 傅里叶变换傅里叶变换,可以理解为将一个函数映射到(L2空间的)某组基上。观察这组基(严格来说不是一组基)cosx,sinx,cos2x,sin2x...发现有个特点是它可以由一个母函数
变换超清晰的理解从傅里叶变换变换,并不是一个完全抽象的东西,可以讲得很形象。变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。下面就按照傅里叶–>短时傅里叶变换–>变换的顺序,讲一下为什么会出现这个东西、究竟是怎样的思路。一、傅里叶变换 关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解
变换图像压缩 MATLAB传统视频图像压缩技术都是基于离散余弦变换(DCT)的压缩方法,例如国际的 H.264 、MPEG4、JPEG 等压缩标准都采用了该技术。DCT是利用对图像分块来进行图像变换的,无法消除块边间的相关性,因此,会出现一些影响我们视觉效果的方块效应,尤其是在低比特率的情下。 变换是全局变换,在时域和频域都由良好的局部优化性能。变换将图像的像素解相关的变换系数进行编码
SPHIT 编码          图像在经过小变换和量化后,还未实现真正意义上的数据量的压缩。因此,需要通过 SPHIT 编码算法对系数进行编码压缩。对图像的编码方式有很多,这些编码包括:游程编码、huffman编码以及算数编码等等。零树结构。    根据这种零树结构提出
图像编码算法尽可能节省图像的存储空间和减少传输带宽需求,图像编码的目的是在满足一定解码重构质量的条件下利用尽可能少的比特数对图像进行表示。数字图像中的像素都不是独立存在的,小到相邻像素之间,大到图像块与图像块之间,不同的图像之间,都会存在一定的相关性。从信息论的角度来说,数据之间的相关性意味着互信息的存在,因此会造成信息上的冗余,而冗余的存在就为图像编码提供了可能。传统视频图像压缩技术都是基于离散
# 使用Python实现变换压缩图像 变换是一种用于图像压缩的强大工具,尤其适合于高效而灵活的图像处理。本文将详细介绍如何在Python中实现变换压缩图像,并逐步引导你完成这一过程。 ## 流程概述 下面是实现变换压缩图像的步骤主要流程: | 步骤 | 描述 | |------|------| | 1 | 安装所需的Python库 | | 2 | 导入库 |
原创 9月前
114阅读
变换在图像压缩方面的实现与应用一、实验图片的基本信息二、数据处理过程2.1波函数的选择2.2图像压缩的基本思想三、不同波函数压缩程度的对比四、MATLAB源码 一、实验图片的基本信息变换作为一种新的数学工具,不仅继承了傅立叶变换的优点,同时又克服了它的许多缺点。由于变换是将图像分解成不同的频率子带。恰巧人眼对不同的频带的信息具有不同的响应,这一点人的视觉系统与很相似。数字图像
相关资料笔记术语(中英对照):尺度函数 : scaling function (在一些文档中又称为父函数 father wavelet )波函数 : wavelet function(在一些文档中又称为母函数 mother wavelet)连续的变换 :CWT离散的变换 :DWT变换的基本知识不同的基函数,是由同一个基本波函数经缩放和平移生成的。变换是将原始图像与基函数
我希望能简单介绍一下变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散 为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不 是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个变换
变换只对信号低频频带进行分解。波包变换继承了变换的时频分析特性,对变换中未分解的高频频带信号进一步分解,在不同的层次上对各种频率做不同的分辨率选择,在各个尺度上,在全频带范围内提供了一系列子频带的时域波形。波包分析就是进一步对子空间按照二进制方式进行频带细分,以达到提高频率分辨率的目的。变换波包变换的关系如下图所示。2、构造原理(1)、第二代波包变换也是有分解和重构两
波级数:CWT的离散化   连续波函数为:将s = s_0^j,tau = k*s_0^j*tau_0代入上式,则波函数变为:                         如果{psi_(j,k)}为一组正交基,则波级数变换变为
在此稍微说一下阈值去噪。手写程序,不调用函数。目的是用来解决各个学校的大作业问题。不用来解决任何实际问题。 首先要了解一下变换从老根上讲就是做卷积。一个信号,或者一个图片,与的高通部分做卷积,得出的系数是高频系数,与的低通部分做卷积得出低频系数。以一张图片阈值去噪为例,讲一下整个编程过程。第一是准备阶段:一张图片是三种数据:高度、宽度和色彩度。编程以经典的二维变换为例,所以
变换傅里叶变换(Fourier Transform,FFT)短时傅里叶变换(Short-time Fourier Transform,STFT)变换(Wavelet transform,WT) 傅里叶变换变换之间的关系 1. 傅里叶变换 2. 短时傅里叶变换 3. 变换 傅里叶变换变换,并不是一个完全抽象的东西,可以讲得很形象。下面我就按照傅里叶—短时傅里叶变换变换
变换有信号显微镜之称,在EEG分析中也有广泛的应用,印象中小算法是来源于地球物理解释的。之前有介绍过小的一些资料和实现:可以参考下,这里主要分析和FIR滤波效果的对比。博客对应的代码和数据# 短时傅里叶变换和FIR滤波效果对比 import mne import matplotlib.pyplot as plt from scipy import signal, fft import
变换是一种时频分析工具,通过母波函数生成子波函数来同时分析信号的时间和频率特征。连续变换通过不同尺
本文介绍了Haar变换的基本原理及其离散实现方法。
介绍了离散变换(DWT)的核心原理与实现方法。重点阐述了从连续变换到DWT的离散化过程,包括尺度参数和平移
变换网文精粹:变换教程(十四) 十四、时间和频率分辨率         下面我们会更进一步的分析变换的分辨率特征。还记得,正是由于分辨率的问题,才使得我们快速傅立叶变换转到变换上。         图3.9经常被用来解释怎样诠释时间和频率分辨率。图3.9中的每个方块都反映了在时频平面内的变换结果
变换理解引言 最近看到一篇讲解变换的文章,写的通俗好理解,深受启发,结合自身理解,简单总结如下:傅里叶变换 --> 短时傅里叶变换 --> 变换。傅里叶变换 fft参考书籍太多了,不展开细致说明,简单说一下fft的不足。既然fft可以用来分析信号的频率成分,为什么还要提出变换? 答案是对于非平稳过程,傅里叶变换有局限性。例子如下:% demo 1 clc; fs = 1
基于的融合(wavelet)  变换的固有特性使其在图像处理中有如下优点:完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;波分析提供了与人类视觉系统方向相吻合的选择性图像。  离散变换(Discrete Wavelet Transform,&nbs
  • 1
  • 2
  • 3
  • 4
  • 5