1. 应用范围高维数据因为其计算代价昂贵(纬度高计算必然昂贵)和建立索引结构的困难(空间索引结构往往面临着“维度灾”),因此有对其进行数据压缩的需求,即对高维数据进行降维,傅里叶变换变换都可以用来做这件事2. 傅里叶变换傅里叶变换,可以理解为将一个函数映射到(L2空间的)某组基上。观察这组基(严格来说不是一组基)cosx,sinx,cos2x,sin2x...发现有个特点是它可以由一个母函数
变换图像压缩 MATLAB传统视频图像压缩技术都是基于离散余弦变换(DCT)的压缩方法,例如国际的 H.264 、MPEG4、JPEG 等压缩标准都采用了该技术。DCT是利用对图像分块来进行图像变换的,无法消除块边间的相关性,因此,会出现一些影响我们视觉效果的方块效应,尤其是在低比特率的情下。 变换是全局变换,在时域和频域都由良好的局部优化性能。变换图像的像素解相关的变换系数进行编码
变换超清晰的理解从傅里叶变换变换,并不是一个完全抽象的东西,可以讲得很形象。变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。下面就按照傅里叶–>短时傅里叶变换–>变换的顺序,讲一下为什么会出现这个东西、究竟是怎样的思路。一、傅里叶变换 关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解
# 使用Python实现变换压缩图像 变换是一种用于图像压缩的强大工具,尤其适合于高效而灵活的图像处理。本文将详细介绍如何在Python中实现变换压缩图像,并逐步引导你完成这一过程。 ## 流程概述 下面是实现变换压缩图像的步骤主要流程: | 步骤 | 描述 | |------|------| | 1 | 安装所需的Python库 | | 2 | 导入库 |
原创 9月前
114阅读
基于的融合(wavelet)  变换的固有特性使其在图像处理中有如下优点:完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;波分析提供了与人类视觉系统方向相吻合的选择性图像。  离散变换(Discrete Wavelet Transform,&nbs
1、  信号分析:获得时间和频率之间关系 傅立叶变换:提供频率域的信息,但有关时间的局部化信息却基本丢失变换:缩放母的宽度来获得信号的频率特征,平移母获得信号的时间信息。缩放和平移操作是为了计算系数,系数反映了和局部信息之间的相关程度。2、:小区域、长度有限、均值为0的波形。—是指它具有衰减性,---指它的波动性,其振幅正负之间的震荡形式。正弦信
变换图像压缩方面的实现与应用一、实验图片的基本信息二、数据处理过程2.1波函数的选择2.2图像压缩的基本思想三、不同波函数压缩程度的对比四、MATLAB源码 一、实验图片的基本信息变换作为一种新的数学工具,不仅继承了傅立叶变换的优点,同时又克服了它的许多缺点。由于变换是将图像分解成不同的频率子带。恰巧人眼对不同的频带的信息具有不同的响应,这一点人的视觉系统与很相似。数字图像
今天将简单介绍使用变换来对多模态图像进行融合。1、图像融合概述图像融合(Image Fusion)是指将多源信道所采集到的关于同一目标的图像数据经过图像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的图像,以提高图像信息的利用率、改善计算机解译精度和可靠性、提升原始图像的空间分辨率和光谱分辨率,利于监测。2、变换特点介绍变换的固有特性使其在图像处理中有如下优点
(一)概念(二)快速变换FWT(1)使用工具箱的FWT(2)不使用工具箱的FWT(三)快速变换(四)波分解结构的处理(1)不使用工具箱编辑波分解系数(2)显示波分解系数(五)图像中的运用 (一)概念变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点
前言  从傅里叶变换到短时傅里叶变换再到变换,这些分析问题的方法是一代一代人的探索和积累得来的宝贵知识财富。比较常见的还有脊变换,曲变换,轮廓变换。感觉一种方法弄懂了,在以后很有可能会再次用到。就像这次,本来本科毕设已经用到了变换和轮廓变换,但是自己并没有把它完全弄懂,结果这次课程作业还是要重新看。。。虽然这一次也还是没搞懂。。这里主要记录MATLAB波包中的函数的用法而已,也只
长期以来,图像压缩编码利用离散余弦变换(DCT)作为主要的变换技术,并成功的应用于各种标准,比如JPEG、MPEG-1、MPEG-2。
原创 2024-04-01 13:35:23
492阅读
第一次写文章,准备写一下利用MATLAB将TIF格式的多波段遥感影像和全色波段的遥感影像进行合成,我们的一个汇报作业,也是第一次系统的学习了一个MATLAB代码,当时不好找tif格式的融合,所以来分享一下。一、原理、优点这里我就简单介绍一下,感兴趣的可以去搜一下这方面的文献。变换是对于二维的图像信号来说, 经过一次离散正交变换后, 图像被分解为 4幅, 其中左上角一幅是原图像的平滑逼近(低
转载 2024-05-27 15:49:21
137阅读
# 变换 图像变换 Python 实现教程 ## 简介 变换是一种信号处理技术,可以将信号分解成不同频率的子信号,并且可以实现图像压缩和特征提取。本教程将介绍如何使用Python实现变换来进行图像变换。 ## 整体流程 下表展示了实现变换图像变换的整体流程。 | 步骤 | 动作 | |------|------| | 1 | 加载图像 | | 2 | 将图像转换
原创 2023-12-21 09:49:40
558阅读
图像要求必须是单通道浮点图像,对图像大小也有要求(1层变换:w,h必须是2的倍数;2层变换:w,h必须是4的倍数;3层变换:w,h必须是8的倍数......),变换后的结果直接保存在输入图像中。 1、 函数参数简单,图像指针pImage和变换层数nLayer。 2、一个函数直接完成多层次二维变换,尽量减少下标运算,避免不必要的函数调用,以提高执行效率。 3、变
今天将简单介绍使用变换来对多模态图像进行融合。1、图像融合概述图像融合(Image Fusion)是指将多源信道所采集到的关于同一目标的图像数据经过图像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的图像,以提高图像信息的利用率、改善计算机解译精度和可靠性、提升原始图像的空间分辨率和光谱分辨率,利于监测。2、变换特点介绍变换的固有特性使其在图像处理中有如下优点
1. 部分常用的变换函数 dwt2:实现一级二维离散变换[ca,ch,cv,cd] = dwt2(Image, 'wavename'); % Image: 待分解图像 % wavename: 波函数,如'db4'、'sym5' % ca: 分解得到的低频分量 % ch: 分解得到的水平高频分量 % cv: 分解得到的垂直高频分量 % cd: 分解得到的对角高频分量 idwt2:实现一级二
     对图像而言,变换是将图像分解成频域上各个频率段的子图,以代表原图的各个特征分量。这对后续的融合处理极为重要,使得融合处理可以根据不同的特征分量采用不同的融合方法以达到最佳融合效果。图像的融合策略(方法)是图像融合的核心,方法与规则的优劣直接影响融合的速度与质量。        在一幅图像波分
变换原理    所谓的是针对傅里叶而言,傅里叶指的是在时域空间无穷震荡的正弦(或余弦)。  相对而言,指的是一种能量在时域非常集中的,它的能量有限,都集中在某一点附近,而且积分的值为零,这说明它与傅里叶一样是正交。  举一些小的例子:可以看到,能量集中在x轴0值附近,以y轴的0值为基线,上下两个区域的波形面积相等。 
序言什么是”(wavelet)就是一种“尺度”很小的波动,并具有时间和频率特性波函数必须满足以下两个条件:(1)必须是振荡的;(2)的振幅只能在一个很短的一段区间上非0,即是局部化的。如■傅里叶变换的基础函数是正弦函数。■变换基于一些小型,称为,具有变化的频率和有限的持续时间。 ◆傅里叶变换反映的是图像的整体特征,  其频域分析具有很好的
# 图像变换的科学探索 变换是一种强大的信号处理工具,特别适合图像处理。它能够在不同的频率尺度上分析信号,从而提取出图像的各个重要特征。在这篇文章中,我们将介绍变换的基本概念,以及如何在Python中实现图像变换。 ## 变换的基本概念 变换通过将信号分解成不同的频率分量,帮助我们在时间和频率两个维度上获得信号的信息。与传统的傅里叶变换不同,傅里叶变换只能在频率域上
  • 1
  • 2
  • 3
  • 4
  • 5