Python可以说是这十年来兴起的编程语言,并且被证明是一种非常强大的语言。我用Python从交互式地图到区块链构建了很多应用程序。Python有很多特性,初学者很难一开始就掌握所有的特性。即使您是一个从其他语言(如C或MATLAB)转换过来的程序员,用更高抽象级别的Python编写代码绝对是另一种体验。我希望早些时候就知道一些Python特性,并重点介绍了其中五个最重要的特性。1.列表理解-压缩
转载
2023-11-21 19:43:25
48阅读
# Python特征分析案例教程
## 1. 流程概述
在进行特征分析之前,我们需要跟踪以下步骤,确保我们能顺利完成特征分析的整个过程。
| 步骤 | 描述 |
|------|-----------------------------------|
| 1 | 数据加载 |
原创
2024-09-27 05:08:44
16阅读
第二章变量和简单数据类型2 - 1简单的消息:一个消息存储在一个变量,然后打印出来。消息=\u201CHello world !\u201D打印(消息)操作结果:Hello world !2 - 2多个简单的消息:一个消息存储在一个变量,并打印出来;然后修改变量的值到一个新的消息,并打印出来。消息=\u201CHello world !\u201D打印消息(消息)=\u201C你好python !
转载
2023-09-12 22:07:48
39阅读
---脚本语言(scripting language)
---高级动态编程语言
简单易学
Python是一种代表简单主义思想的语言。Python的这种伪代码本质是它最大的优点之一。它使你能够专注于解决问题而不是去搞明白语言本身。Python有极其简单的语法,极易上手。
解释性&编译性
-Python语言写的程序不需要编译成二进制代码。可以直接从源代码运行程序,但
转载
2023-08-12 22:35:14
96阅读
完成数据清理后,下面通过图表展开对数据的分析。1.前期初判(分布分析): 1)判断分组区间:# a.散点图:
plt.scatter(data[字段1],data['字段2'],
s = data[字段3], # 显示大小
c = data[字段4], # 显示颜色
alpha = 0.4, cmap = 'Reds')
# b.直方图:
data[字段].hist(bins=10) 2)求出
转载
2023-08-11 17:09:57
94阅读
python——面向对象特征 文章目录python——面向对象特征0. 面向对象的三大特征1. 封装2. 继承3. 方法重写4. objeck类5. 多态5.1 静态语言与动态语言6. 特殊方法和特殊属性7. 类的浅拷贝与深拷贝 0. 面向对象的三大特征封装:提高程序的安全性(1)将数据(属性)和行为(方法)包装到类对象中。在方法内部对属性进行操作,在类对象的外部调用方法。这样,无需关心方法内部的
转载
2023-09-02 16:24:01
0阅读
首先说一下为什么要做特征工程?总的来说机器学习算法就是用输入的数据来推算输出的数据。输入的数据包含以下特征,这些特征是以行列矩阵的列来表示,算法需要具有特定形式的特征作为输入才能更好地发挥作用,模型的表现才能达到最佳,所以我们要对输入的特征进行一些列的操作,这个过程就是特征工程。在这篇文章里我利用Python把主要的特征工程技术通过全代码的形式,给大家做一个分享。首先是缺失值的处理1、删除缺失值缺
转载
2023-08-29 06:40:03
120阅读
基于时序数据的回归预测问题,在工作中经常遇到的。它与一般的监督学习的回归模型的区别在于数据本身是基于时序的。而常用的时序预测模型,比如arima等,添加其他特征时又不方便,不得不求助于经典的监督学习预测模型。本文初步介绍了对时序数据建模时,如何构建有效的特征工程。时间序列数据,在我们可以为之使用机器学习算法建模之前,必须先重新构建为一个监督数据集。在时间序列中,没有输入输出特征的概念。相反,我们必
转载
2024-07-24 09:08:22
41阅读
机器学习python入门之特征工程Baseline model加载数据Load the data准备目标列Prepare the target column转换时间戳Convert timestampsPrep categorical variablesCreate training, validation, and test splitsTrain a modelMake prediction
转载
2023-08-10 18:12:38
221阅读
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也非常强大! 经过前人的总结,特征工程已经形成了接近标准化的流程
转载
2023-07-12 22:06:10
214阅读
作者 | William Koehrsen译者 | 王天宇编辑 | Jane出品 | AI科技大本营 【导读】如今机器学习正在从人工设计模型更多地转移到自动优化工作流中,如 H20、TPOT 和 auto-sklearn 等工具已被广泛使用。这些库以及随机搜索等方法都致力于寻找最适合数据集的模型,以此简化模型筛选与调优过程,而不需要任何人工干预。然而,特征工程作为机器学习过程
转载
2023-10-07 15:41:30
128阅读
特征工程是数据科学和机器学习中的重要技巧,对机器模型性能和EDA(exploratory data analysis)的质量有重要影响。本文介绍几种特征工程技巧 目录什么是特征工程数据集缺失值处理类别特征缺失值处理方法数值特征缺失值处理使用模型填充缺失值类别特征处理类别特征类型独特编码哈希编码数值/连续特征的处理使用领域知识构造特征多项式(交叉)特征特征标准化日期特征处理地理位置特征处理 什么是特
转载
2023-10-21 10:50:16
85阅读
利用Python进行常见的特征工程上期说到数据分析师一般对业务数据提取的时候就会进行数据清洗,也会做一些业务逻辑或者数据逻辑上的特征处理。但由于特征工程是数据建模重要的一环,所以这里就做一个简单的总结。希望能给大家带来一些小小地帮助~首先给到一个特征工程概览图(如下):单特征操作数据变换离散变量-哑编码import pandas as pd
# 构造数据
df = pd.DataFrame({'
转载
2023-08-10 22:13:17
336阅读
觉得有帮助请点赞关注收藏~~~特征工程特征工程的目标是从实例的原始数据中提取出供模型训练的合适特征。在掌握了机器学习的算法之后,特征工程就是最具创造性的活动了。 特征的提取与问题的领域知识密切相关一般来说,进行特征工程,要先从总体上理解数据,必要时可通过可视化来帮助理解,然后运用领域知识进行分析和联想,处理数据提取出特征。并不是所有提取出来的特征都会对模型预测有正面帮助,还需要通过预测结果来对比分
转载
2023-09-30 19:55:21
193阅读
数据处理的一种方式,和前面的原始数据不一样的是,我们在原始数据的基础上面,通过提取有效特征,来预测目标值。而想要更好的去得出结果,包括前面使用的数据处理中数据特征提取,新增减少等手段都是特征功能的一种,这里为什么要单独提出来讲特征工程,而不是数据处理呢? 二、数据处理的方式有很多种方式,合并等。这里讲特征工程主要是讲转换器,为啥这样说呢,因为我们在使用数据的时候,比如:文本,那我们通过文本的方式
转载
2023-07-25 17:38:43
95阅读
特征工程常见示例: 分类数据、文本、图像。 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法。这个过程被叫做向量化。把任意格式的数据 转换成具有良好特性的向量形式。分类特征比如房屋数据: 房价、面积、地点信息。方案1:把分类特征用映射关系 编码成 整数 。{'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};在scikit-learn中并
转载
2024-06-04 06:02:52
78阅读
编写程序时,错误的出现可能会导致整个程序的崩溃。为了降低这种错误带来的损失,我们希望程序能够检测错误,处理他们,然后继续运行,这就是异常处理。在学习Python的过程中,掌握异常处理,对学习者来说是一个相对基础性的要求。Python有两种错误很容易辨认,即语法错误和异常。Python的语法错误或者称之为解析错,是初学者经常碰到的,如下实例:>while True print('Hello w
转载
2023-11-23 10:51:32
97阅读
第一题: 编写代码读取网址”http://www.python.org”内容,并将起始的的一百个字符输入到文件a.txt中。import urllib.request #导入urllib.request模块
url=urllib.request.urlopen('http://www.python.org') #打开网址
p=url.read(100).decode() #截取前100个字符
转载
2023-08-20 21:41:29
91阅读
机器学习之特征工程 目录机器学习之特征工程1.特征工程的定义1.1为什么需要特征工程1.2什么是特征工程1.3特征工程的意义1.4实现特征工程2.特征提取2.1目的2.2特征提取的方式2.2.1字典特征提取2.2.2 文本特征提取2.2.3jieba分词2.3onhot编码 1.特征工程的定义1.1为什么需要特征工程样本数据中的特征有可能会存在缺失值,重复值,异常值等,需要对特征中的相关的噪点数据
转载
2024-07-31 17:21:48
28阅读
全文5000+字,理论+实践,方法论和实际案例都有,先码后看!做数据分析,要解决的第一个问题就是:分清楚应用场景。第一种:
有一部分人只是需要在一些工作中,分析部分数据,从而指导自己工作,为之后计划做支撑,这种类型的数据分析,薅一些数据分析的皮毛即可。
01 夯实基础常识——建立数据分析概念在夯基础阶段,你需要学习统计学相关知识,这些知识点一般在一些入门书籍、学习网站就可以get到:02 了
转载
2024-08-23 10:39:09
31阅读