各种分布白噪声的产生matlab3、各种分布白噪声的产生均匀分布白噪声的产生1、物理方法2、数学方法线性同余法、联合法、反馈位移寄存器法非均匀分布白噪声的产生1、理论方法反变换法、舍选抽样法、复合法、变换法、查表法2、常用的连续分布及其产生均匀分布、指数分布、正态分布、对数正态分布、威布尔分布、瑞利分布3、常用的离散分布及其产生伯努利分布、离散均匀分布、几何分布、泊松分布2014/8/12 哈
转载
2024-10-13 11:29:21
33阅读
1. 白噪声主要是高斯白噪声。2. 为什么是高斯白噪声? 高斯白噪声:1)这个噪声它是一个随机信号。2)“白”是指其功率谱的常数,这样他的自相关函数是狄拉克函数(冲激函数),由于它的自相关函数是冲激函数,这说明信号只与它自己相关,它的时延信号就相关,也可以形象地说这种信号是“翻脸不认人”;功率谱是常数,人们形象的用白色光包含七彩光来比喻,这种频谱又称为“白谱”。3)“高斯”是指这个噪声信号的信号
转载
2023-07-01 17:18:22
281阅读
概述 一般在物理上把它翻译成白噪声(white noise)。白噪声是指功率谱密度在整个频域内均匀分布的噪声。 所有频率具有相同能量的随机噪声称为白噪声。从我们耳朵的频率响应听起来它是非常明亮的“咝”声(每高一个八度,频率就升高一倍。因此高频率区的能量也显著增强)。白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色
转载
2023-10-31 16:26:39
90阅读
本应用指南的目的之一是让读者能够更好地理解在噪声系数测量中的测量精度问题。此篇为部分学习参考,详情可以参考本人的资源文章。目录1 什么是噪声系数?1.1 噪声系数的定义:2 噪声系数的测量技术2.1 Y 因子法2.2 冷源法(直接噪声测量法)1 什么是噪声系数?噪声系数是用来描述一个系统中出现的过多的噪声量的品质因数。把噪声系数降低到最小的程度可以减小噪声对系统造成的影响。设计人员总是在尽最大努力
转载
2023-12-18 15:25:29
109阅读
一、预处理 纯随机性和平稳性进行检验,这个连个重要的检验称为序列的预处理。根据检验结果可以将序列分为不同的类型,对不同类型的序列会采取不同的分析方法。纯随机序列,又称为白噪声序列。 序列的各项之间没有任何相关关系,序列在进行完全无序的随机波动,可以终止对该序列的分析。白噪声序列是没有信息可以提取的平稳序列。平稳非白噪声序列,它的均值和方差是常数,通常是建立一个线性模型来拟合该序列的发展,
转载
2023-11-08 21:43:54
232阅读
rand产生的是[0,1]上的均匀分布的随机序列randn产生均值为0,方差为1的高斯随机序列,也就是白噪声序列rand产生的是均匀分布白噪声序列randn产生的是正态分布的白噪声序列MATLAB还提供了两个产生高斯白噪声的函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个
转载
2023-08-10 14:33:55
427阅读
在数字信号处理领域,白噪声和高斯白噪声是常见的概念。白噪声指的是频谱上均匀分布的信号,而高斯白噪声则特指其幅度服从高斯分布的白噪声。在 Python 中模拟和分析这些噪声,可以帮助我们了解它们的性质,用于音频处理、通信系统仿真等多种应用场景。
## 背景描述
在处理信号时,白噪声被广泛用于生成随机信号。四象限图可以帮助我们将白噪声和高斯白噪声的特性进行可视化比较。
1. 白噪声:频谱上每个频率
# 白噪声与Python:探秘声音的奥秘
在我们的日常生活中,声音伴随我们左右,而“白噪声”则是其中一个非常有趣的现象。白噪声是一种包含了许多频率的声音,通常在听感上会给人一种“嘶嘶声”或“沙沙声”的效果。本文将介绍什么是白噪声以及如何在Python中生成白噪声,并探讨其应用。
## 什么是白噪声?
白噪声是一种声音信号,其特点是均匀覆盖整个听觉频谱。简单来说,白噪声的频率分布是平坦的,这意
白噪声检验也称为纯随机性检验, 当数据是纯随机数据时,再对数据进行分析就没有任何意义了, 所以拿到数据后最好对数据进行一个纯随机性检验acorr_ljungbox(x, lags=None, boxpierce=False) # 数据的纯随机性检验函数lags为延迟期数,如果为整数,则是包含在内的延迟期数,如果是一个列表或数组,那么所有时滞都包含在列表中最大的时滞中boxpierce为True时表
转载
2023-08-23 07:15:29
163阅读
白噪声检验: 对数据序列的随机性做假设检验。可以用的方法:Ljung_Box检验。 python acorr_ljungbox()函数。from statsmodels.stats.diagnostic import acorr_ljungbox
print(u'白噪声检验结果:',acorr_ljungbox(data, lags=2))#返回统计量和p值 lags为检验的延迟数原假设:是随机
转载
2023-06-15 00:50:25
591阅读
本文介绍如何利用Python自行生成随机序列,实现了 Whichmann / Hill 生成器。参考: [1]Random Number Generation and Monte Carlo Methods(P.47) [2]简单产生白噪声的算法 [3]各种分布白噪声的产生 基本原理 本文粗略将随机数分为两种:均匀分布以及非均匀分布。均匀分布随机数通过非线性变换可得到
转载
2023-06-29 08:53:24
191阅读
你的序列均值为零吗?方差随时间变化吗?值与延迟值相关吗?你可以用一些工具来检查你的时间序列是否为白噪音:创建一个折线图。检查总体特征,如变化的平均值,方差或延迟变量之间的明显关系。计算汇总统计。对照序列中有意义的连续块的均值和方差,检查整个序列的均值和方差(如年、月、日)。创建一个自相关的图。检查延迟变量之间的总体相关性。白噪声时间序列的例子在本节中,我们将使用Python创建一个高斯白噪声序列并
转载
2023-07-07 11:26:41
328阅读
白噪声一、白噪声定义及性质在时间序列中,最简单的平稳过程(纯随机过程)就是白噪声过程(White Noise),具体如下: {} 是白噪声过程,如果满足: 也就是均值为0,方差为 ,协方差为0 (无自相关性) 的序列,简单记为 从白噪声序列的协方差为0可以得到,其ACF除在0处之外均为0,即 只有当序列为白噪声序列才有上述的关系,容易出错的是,很多人往往计算时会下意识默认序列为平稳序列,于是
转载
2024-06-05 12:50:30
257阅读
MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(
转载
2023-11-09 09:15:13
98阅读
matlab中rand函数是产生0到1的随机分布,matlab中randn函数是产生标准正态分布,randint是产生整数随机数,默认为0和1 >> rand(3) ans = 0.8147 0.9134 0.2785 0.9058 0.6324 0.5469 0.1270 0.0975 0.9575 >> randn(3) ans = -0.4326 0.2877 1.
转载
2024-06-05 22:28:09
179阅读
系统的状态方程为:这个状态方程是根据上一时刻的状态和控制变量来推测此刻的状态,wk-1是服从高斯分布的噪声,是预测过程的噪声,它对应了 xk 中每个分量的噪声,是期望为 0,协方差为 Q 的高斯白噪声wk-1~N(0,Q),Q即下文的过程激励噪声Q.观测方程为:vk是观测的噪声,服从高斯分布,vk~N(0,R),R即下文的测量噪声R。卡尔曼滤波算法有两个基本假设: ( 1) 信息过程的足够精确的模
转载
2023-12-29 23:25:11
87阅读
1.椒盐噪声(Salt Pepper Noise)椒盐噪声也称为脉冲杂讯,是图像中经常见到的一种杂讯,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有) ——维基百科1.1 关于椒盐噪声的几点注意噪点类型随机,即亮斑或暗斑(对应灰度图0、255)噪声概率为先验概率(如:噪声概率为0.1,数据点总数为100,而实际的噪点数并不一定为10)。关于先验概率与
转载
2023-11-06 16:25:19
76阅读
本文是Quantitative Methods and Analysis: Pairs Trading此书的读书笔记。白噪声(white noise)是最简单的随机时间序列(stochastic time series)。在每一时刻,从一个正态分布中抽取一个值从而形成白噪声时间序列。并且,这个正态分布的参数是固定的,不会随着时间变化。所以,这种情况就是从一个固定的概率分布中重复抽取值形成时间序列。
转载
2023-10-13 16:00:03
205阅读
一、白色噪声和有色噪声的定义1. 白噪声 所谓的高斯白噪声是指信号的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的(是一个常数)。系统表示过程中所用到的数据通常都是含有噪声的,从工程实际出发,这种噪声往往可以视为具有有理谱密度的平稳随机过程。白噪声是一种最简单的随机过程,是由一系列不相关的随机变量组成的理想化随机过程。其自相关函数为狄拉克函
转载
2024-01-25 20:44:40
325阅读
1 连续高斯白噪声和离散高斯白噪声有什么异同?实际场景中的高斯白噪声都是时间上连续的,而离散的噪声则常应用于计算机仿真中。离散噪声就是从连续的噪声数据中采样得到。2 两者的功率谱有什么含义?连续高斯白噪声的功率谱为功率密度(w/Hz或J)随频率分量(Hz)变化的情况,平均功率即为曲线的积分;已知白噪声的功率谱为常数,每个时间点的能量为,功率为无穷小。整个频带上平均功率为无穷大。另外,对于窄带高斯白
转载
2023-12-11 16:26:38
87阅读