调整基于HAAR特征的AdaBoost级联分类器的物体识别的参数1. 基于HAAR特征的AdaBoost级联分类器的物体识别问题很多训练好的XML文件不好用。2. 调整参数的意义        既然训练好的XML文件不好用,是不是意味着要重新训练分类器?如果需要检测的物体在OpenCV中有,那么尽量用OpenCV中自带的分类器。因为自带的分类器包含了很多工作
  在文章 OpenCV入门之获取验证码的单个字符(字符切割)中,介绍了一类验证码的处理方法,该验证码如下: 该验证码的特点是字母之间的间隔较大,很容易就能提取出其中的单个字符。接下来,笔者将会介绍如何在另一种验证码中提取单个字符的方法。   测试的验证码来源于某个账号注册的网站,如下: 笔者一共收集了346张验证码。我们可以看到,这些验证码的特点是:噪声较大,有些验证码之间的字母黏连在一起,这样
MNIST数据集我这里使用的数据集为MNIST提供的免费数据集。其中包含6w张训练集和1k张验证集。在该数据集中,图片都是以pytorch张量的形式表现的。为使方法具有通用性,这里将张量转化为图片并以    data -> train/val -> 类别1/2/...  -> 图片的形式进行存储。如下图:这里的每张照片都单通道28*28的格式。数据整
svm训练.xml文件 #include "opencv2/opencv.hpp" #include "iostream" #include "fstream" using namespace cv; using namespace std; void getdata() { vector<string> img_path;//输入文件名变量 ve
需配置好OpenCV和OCR环境下运行1、OpenCV简介OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python, Java and MATLAB/OCTAVE (版本2.5)的接口。这些语言的API接口函数可以通过在
转载 2023-11-26 16:43:14
111阅读
目录前言 一、图像处理?二值化处理?膨胀、腐蚀?开运算、闭运算二、案例实现Step1:灰度处理Step2:对视频进行帧差处理Step3:二值化处理Step4:腐蚀处理Step5:膨胀处理 Step6:标记、框选目标?完整代码三、总结 前言 本文主要以车辆识别为目标,利用 C++语言 结合 Qt + OpenCV 进行图像处理相关步骤的讲解一、图像处理?二值化
霍夫线变换 简介:1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着
霍夫线变换的思想是:霍夫线变换必须应用在二值图像上,它认为图像上每一个点都有可能是某条直线上的一个点,对过每点的所有直线进行投票,根据设定的权重做最终的判断,这个是霍夫线变换的理论基础。OpenCV 4 提供了检测图像边缘是否存在直线和圆形的检测算法直线检测霍夫直线变换霍夫变换中存在的两个重要的结论(1)图像空间中的每条直线在参数空间中都对应着单独一个点来表示。(2)图像空间中的直线上任何像素点在
opencv的puttxt()函数不能汉字输出,这也是困惑好多人都问题,经过几天的查资料,改代码终于成功实现opencv汉字输出。第一种方法是 是通过写一段代码,能够转码,封装一下再调用,从而实现汉字输出。第二种方法是 使用PIL进行转换一下以下这个是ft2.py  实现转码的代码# -*- coding: utf-8 -*- #
# 使用OpenCV识别形状的完整指南 在机器视觉领域,OpenCV是一个非常流行的图像处理库,它提供了大量的功能来帮助我们实现图像和视频中的各种视觉任务。今天我们将介绍如何使用Python中的OpenCV库来识别形状。本文将涵盖整个流程,从准备工作到实现细节,适合刚入行的小白学习。 ## 一、项目流程概述 下表展示了实现OpenCV形状识别的整体步骤: | 步骤 | 描述
原创 7月前
86阅读
§00 前  本文将会介绍使用OpenCV进行图像块简单检测算法。0.1 什么是图像块?  所谓图像块就是在图像中一组相邻的具有相同特性(比如灰度值)像素区域。在前面的图像中,那些紧挨在一起的黑色像素区域就是图像块。图像块检测就是找到并标记出这些区域。0.2 检测样例代码  OpenCV提供了检测图像块的方便方法并使用不同特征将它们过滤出来。 下面以简单示例开始:Python# Standar
转载 2023-11-01 23:56:29
340阅读
目录一、什么是物体测量?二、如何实现物体测量?三、算法实现细节四、算法代码实现五、算法运行过程六、效果展示七、问题探讨参考资料注意事项 一、什么是物体测量?所谓的物体测量就是算法通过计算后自动的输出图像中各个物体的大小,具体如下图所示:   我们将该图输入到设计的算法中,算法通过计算依从从左往右输出图片中各个物体的大小并输出相应的BB,这个任务在现实场景中具有很多的应用,下面就来看看如何来实现这
预备知识 下面两个都不是必备知识,但是如果你想了解更多内容,可参考这两篇文章。 OpenCV 2.4+ C++ SVM介绍 OpenCV 2.4+ C++ SVM线性不可分处理  SVM划分的意义 到此,我们已经对SVM有一定的了解了。可是这有什么用呢?回到上一篇文章结果图: 这个结果图的意义在于,他成功从二维划分了分类的区域。于是如果以后,有一个新的样本在绿色区域,那么我们就可以把他
转载 2023-09-05 21:34:00
114阅读
最近完成了基于MFC 的车牌识别系统:整个系统包括车牌定位 车牌矫正  车牌切割 及车牌识别四大部份在整体制作过程中有所感悟:首先最大的感悟是,因为我没有搜索到可用于识别的车牌库图片,所以就从网上随便选取了一系列车牌图片用于识别,由于随机性 导致在对一些参数设置时不能对所有图片满足,但经过不断的尝试,最终可将大部分图片成功定位 矫正 切割。其中付出的代价时很艰辛的。如二值化处理,因为图片
        车牌识别包括车牌检测(通过图像分割、特征提取获得车牌位置)+车牌识别(对检测到的车牌进行字符内容识别)。一、基本流程如下:1.车牌检测1)读取需要进行车牌识别的图片;2)对图像进行灰度化处理(高斯模糊可选择是否进行)和灰度拉伸;3)进行开运算,消除图像中的噪声;4)将灰度拉伸后的图像和开运算后的图像求差
阿尔伯特·爱因斯坦曾经说过这么一句话“如果你不能简单地解释它,你就不能很好地理解它”,我深以为然!尤其是在计算机视觉领在业务中,阻止AI发展的主要障碍之一是深度学习解决方案是需要完全掌握和理解这些工具的工作方式,这是极其复杂的。除此之外,还有为业务案例开发和实施正确的解决方案的时效性。显然,该列表并非详尽无遗,因此企业在实施此类工具时会慢慢采取行动。我还要补充说,与一个更简单且可能更旧的解决方
实验一 图像的载入、显示与输出一、实验目的和要求二、实验内容三、实验仪器、设备四、实验原理五、实验步骤六、实验注意事项七、实验结果八、实验总结 一、实验目的和要求  (一)通过实验掌握 Windows 中安装 OpenCV 的方法;   (二)通过实验掌握图像的载入、显示与输出的方法二、实验内容  (一)Windows中安装OpenCV;   (二)编写图像的载入、显示与输出的程序.三、实验仪器
人脸任务在计算机视觉领域中十分重要,本项目主要使用了两类技术:人脸检测+人脸识别。代码分为两部分内容:人脸注册 和 人脸识别人脸注册:将人脸特征存储进数据库,这里用feature.csv代替人脸识别:将人脸特征与CSV文件中人脸特征进行比较,如果成功匹配则写入考勤文件attendance.csv文章前半部分为一步步实现流程介绍,最后会有整理过后的完整项目代码。一、项目实现A. 注册: 导
转载 2023-10-07 15:23:29
819阅读
1点赞
1评论
最近在学习OpenCV,OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,拥有丰富的图像处理和计算机视觉方面的算法,同时提供了很多通用算法API。最新的opencv2的版本为2.4.13。下载地址http://opencv.org/更简单的python版本:识别圆形(python版)今天做
基于OpenCV的车牌识别与分割车牌识别的整个流程分为车牌位置查找, 车牌分割, 字符分割三部分, 车牌位置查找主要基于色彩空间查找的方法, 车牌分割主要基于位置查找之后的车牌二值图的行列加和统计.车牌位置查找以目前最常见的蓝色车牌为例, 车牌查找过程首先要进行一次基于色彩的特殊灰度化, 主要原理是将原图进行rgb通道分离, 然后进行通道相减提取蓝色区域, 并与普通的灰度图进行一次加权平均, 得到
  • 1
  • 2
  • 3
  • 4
  • 5