前言

最近研究了几天车牌识别的项目,现在记录一下学习的过程,基于OpenCV编写Python代码来完成这一任务。

文章末尾有源码,有兴趣的读者可以用jupyter notebook一步一步看执行过程和结果。

本项目车牌识别的步骤为:

  1. 加载图片
  2. 高斯去噪
  3. 灰度转换
  4. 边缘检测
  5. 闭运算,腐蚀膨胀
  6. 中值滤波去噪
  7. 轮廓检测
  8. 车牌位置筛选,图像矫正
  9. 颜色筛选确定车牌

详细过程

显示图片的函数

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import numpy as np
import json

# 显示图片
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey()
    cv2.destroyAllWindows()


# plt显示彩色图片
def plt_show0(img):
    b, g, r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()


# plt显示灰度图片
def plt_show(img):
    plt.imshow(img, cmap='gray')
    plt.show()
    
def point_limit(point):
    if point[0] < 0:
        point[0] = 0
    if point[1] < 0:
        point[1] = 0

1、加载图片

图片来源于网图,如有侵权,请联系我删除!

# 加载图片
rawImage = cv2.imread("./image/car16.jpg")
pic_hight, pic_width = rawImage.shape[:2]
plt_show0(rawImage)

opencv python识别车牌 车牌识别opencv代码_像素点

2、高斯去噪

函数解释

cv2.GaussianBlur(src,ksize,sigmaX,sigmaY,borderType)

src:原始圖像

ksize: 滤波核的大小。滤波核大小是指在滤波处理过程中其邻域图像的高度和宽 度。需要注意,滤波核的值必须是奇数。

sigmaX: 是卷积核在水平方向上(X 轴方向)的标准差,其控制的是权重比例。

sigmaY是卷积核在垂直方向上(Y轴方向)的标准差。如果将该值设置为0,则只采用sigmaX的值

borderType是边界样式,该值决定了以何种方式处理边界。一般情况下,不需要考虑该值

# 高斯去噪
image = cv2.GaussianBlur(rawImage, (3, 3), 0)

opencv python识别车牌 车牌识别opencv代码_像素点_02

3、灰度转换

# 灰度转换
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)

opencv python识别车牌 车牌识别opencv代码_python_03

4、边缘检测

边缘检测主要有两种方法:Sobel边缘检测和Canny边缘检测,本文采用Sobel算子。

Sobel 算子是高斯平滑和微分运算的组合,抗噪能力很强,用途也很多,尤其是效率要求高但对细纹理不是很在意的时候。

函数解释

cv2.Sobel(src,ddepth,dx,dy[,ksize[,scale[,delta[,borderType]]]])

src 为原始图像

ddepth代表输出图像的深度。

dx代表x方向上的求导阶数。

dy代表y方向上的求导阶数。

ksize代表Sobel核的大小。该值为-1时,则会使用Scharr算子进行运算。

scale代表计算导数值时所采用的缩放因子,默认情况下该值是1,是没有缩放的。

delta代表加在目标图像dst上的值,该值是可选的,默认为0。

borderType代表边界样式。

# sobel算子边缘检测(做了一个y方向的检测)
# 为什么对Y方向取边缘:让图像变“瘦”,便于把车牌揉成一团。
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)  # 转回uint8
image = absX
plt_show(image)

opencv python识别车牌 车牌识别opencv代码_python_04

自适应阈值处理

ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)

opencv python识别车牌 车牌识别opencv代码_python_05

5、闭运算

函数解释:

cv2.morphologyEx(src, op, kernel)

src 为原始图像

op进行变化的方式(开闭)

kernel表示方框的大小

闭运算就是先进行一遍膨胀,把内部的黑洞区填充,再进行一遍腐蚀,整体平滑且面积几乎不受影响。

# 闭运算,是白色部分练成整体
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (15,4))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 3)
plt_show(image)

opencv python识别车牌 车牌识别opencv代码_像素点_06

6、去除小白点(膨胀腐蚀)

# 去除一些小的白点
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))

# 膨胀,腐蚀
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
# 腐蚀,膨胀
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)

plt_show(image)

opencv python识别车牌 车牌识别opencv代码_python_07

7、中值滤波

中值滤波:会取当前像素点及其周围临近像素点(一共有奇数个像素点)的像素值,将这些像素值排序,然后将位于中间位置的像素值作为当前像素点的像素值

函数解释

cv2.medianBlur(src,ksize)

# 中值滤波去除噪点
image = cv2.medianBlur(image, 15)
plt_show(image)

opencv python识别车牌 车牌识别opencv代码_边缘检测_08

8、轮廓检测

# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = rawImage.copy()
cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
plt_show0(image1)

opencv python识别车牌 车牌识别opencv代码_opencv python识别车牌_09

9、筛选轮廓

# 筛选出车牌位置的轮廓
car_contours = []
car_min_contours = []
for item in contours:
    # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
    rect = cv2.boundingRect(item)
    rect_min = cv2.minAreaRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    print(weight/height)
    # 440mm×140mm
    if (weight > (height * 2)) and (weight < (height * 5)):
        image = rawImage[y:y + height, x:x + weight]
        car_contours.append(image)
        car_min_contours.append(rect_min)
        plt_show0(image)

opencv python识别车牌 车牌识别opencv代码_像素点_10

10、轮廓矫正

car_images = adjust_image(car_min_contours,car_contours)
for car in car_images:
    plt_show0(car)

opencv python识别车牌 车牌识别opencv代码_opencv python识别车牌_11

11、颜色筛选

colors = []
color_images = []
for contour in car_images:
    color,image = recognition_color(contour)
    colors.append(color)
    color_images.append(image)
    
for index,car in enumerate(color_images):
    if colors[index] in ("blue","green","yello"):
        car_image = car.copy()
        print(colors[index])
        plt_show0(car)

opencv python识别车牌 车牌识别opencv代码_灰度_12

源码

config.js

{
	"config":[
	{
		"open":1,
		"blur":3,
		"morphologyr":4,
		"morphologyc":19,
		"col_num_limit":10,
		"row_num_limit":21
	},
	{
		"open":0,
		"blur":3,
		"morphologyr":5,
		"morphologyc":12,
		"col_num_limit":10,
		"row_num_limit":18
	}
	]
}

项目

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import numpy as np
import json


# 显示图片
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey()
    cv2.destroyAllWindows()


# plt显示彩色图片
def plt_show0(img):
    b, g, r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()


# plt显示灰度图片
def plt_show(img):
    plt.imshow(img, cmap='gray')
    plt.show()


def point_limit(point):
    if point[0] < 0:
        point[0] = 0
    if point[1] < 0:
        point[1] = 0

cfg = ""
f = open('./config.js')
j = json.load(f)
for c in j["config"]:
    if c["open"]:
        cfg = c.copy()
        break

def accurate_place(card_img_hsv, limit1, limit2, color):
    row_num, col_num = card_img_hsv.shape[:2]
    xl = col_num
    xr = 0
    yh = 0
    yl = row_num
    # col_num_limit = self.cfg["col_num_limit"]
    row_num_limit = cfg["row_num_limit"]
    col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5  # 绿色有渐变
    for i in range(row_num):
        count = 0
        for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if limit1 < H <= limit2 and 34 < S and 46 < V:
                count += 1
        if count > col_num_limit:
            if yl > i:
                yl = i
            if yh < i:
                yh = i
    for j in range(col_num):
        count = 0
        for i in range(row_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if limit1 < H <= limit2 and 34 < S and 46 < V:
                count += 1
        if count > row_num - row_num_limit:
            if xl > j:
                xl = j
            if xr < j:
                xr = j
    return xl, xr, yh, yl

# 矫正图片
def adjust_image(car_min_contours,car_contours):
    card_imgs = []
    #矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
    for index,rect in enumerate(car_min_contours):
        if rect[2] > -1 and rect[2] < 1:#创造角度,使得左、高、右、低拿到正确的值
            angle = 1
        else:
            angle = rect[2]
        rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#扩大范围,避免车牌边缘被排除

        box = cv2.boxPoints(rect)
        heigth_point = right_point = [0, 0]
        left_point = low_point = [pic_width, pic_hight]
        for point in box:
            if left_point[0] > point[0]:
                left_point = point
            if low_point[1] > point[1]:
                low_point = point
            if heigth_point[1] < point[1]:
                heigth_point = point
            if right_point[0] < point[0]:
                right_point = point

        if left_point[1] <= right_point[1]:#正角度
            print("正")
#             new_right_point = [right_point[0], heigth_point[1]]
#             pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改变
#             pts1 = np.float32([left_point, heigth_point, right_point])
#             M = cv2.getAffineTransform(pts1, pts2)
#             dst = cv2.warpAffine(rawImage, M, (pic_width, pic_hight))
#             point_limit(new_right_point)
#             point_limit(heigth_point)
#             point_limit(left_point)
#             card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
#             card_imgs.append(card_img)
            card_imgs.append(car_contours[index])
        elif left_point[1] > right_point[1]:#负角度
            print("负")
            new_left_point = [left_point[0], heigth_point[1]]
            pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改变
            pts1 = np.float32([left_point, heigth_point, right_point])
            M = cv2.getAffineTransform(pts1, pts2)
            dst = cv2.warpAffine(rawImage, M, (pic_width, pic_hight))
            point_limit(right_point)
            point_limit(heigth_point)
            point_limit(new_left_point)
            card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
            card_imgs.append(card_img)
    return card_imgs


# 颜色定位车牌
def recognition_color(image):
    green = yello = blue = black = white = 0
    card_img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    row_num, col_num = card_img_hsv.shape[:2]
    card_img_count = row_num * col_num
    for i in range(row_num):
        for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                yello += 1
            elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                green += 1
            elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                blue += 1

            if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                black += 1
            elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                white += 1
    color = "no"
    limit1 = limit2 = 0
    if yello * 2 >= card_img_count:
        color = "yello"
        limit1 = 11
        limit2 = 34  # 有的图片有色偏偏绿
    elif green * 2 >= card_img_count:
        color = "green"
        limit1 = 35
        limit2 = 99
    elif blue * 2 >= card_img_count:
        color = "blue"
        limit1 = 100
        limit2 = 124  # 有的图片有色偏偏紫
    elif black + white >= card_img_count * 0.7:  # TODO
        color = "bw"
    xl, xr, yh, yl = accurate_place(card_img_hsv, limit1, limit2, color)
    if yl == yh and xl == xr:
        return color,image
    need_accurate = False
    if yl >= yh:
        yl = 0
        yh = row_num
        need_accurate = True
    if xl >= xr:
        xl = 0
        xr = col_num
        need_accurate = True
    image = image[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else image[yl-(yh-yl)//4:yh, xl:xr]
    if need_accurate:#可能x或y方向未缩小,需要再试一次
        card_img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        xl, xr, yh, yl = accurate_place(card_img_hsv, limit1, limit2, color)
        if yl == yh and xl == xr:
            return color,image
        if yl >= yh:
            yl = 0
            yh = row_num
        if xl >= xr:
            xl = 0
            xr = col_num
    image = image[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else image[yl-(yh-yl)//4:yh, xl:xr]
    return color,image



# 加载图片
rawImage = cv2.imread("./image/car16.jpg")
pic_hight, pic_width = rawImage.shape[:2]
# plt_show0(rawImage)

# 高斯去噪
image = cv2.GaussianBlur(rawImage, (3, 3), 0)
#中值去噪
# image =  cv2.medianBlur(rawImage,3)
# plt_show0(image)


# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# plt_show(gray_image)


# sobel算子边缘检测(做了一个y方向的检测)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)  # 转回uint8

image = absX

# plt_show(image)

# 自适应阈值处理
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# plt_show(image)


# 闭运算,是白色部分练成整体
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (15,4))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 3)
# plt_show(image)

# 去除一些小的白点
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))

# 膨胀,腐蚀
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
# 腐蚀,膨胀
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)

# plt_show(image)


# 中值滤波去除噪点
image = cv2.medianBlur(image, 15)
# plt_show(image)


# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = rawImage.copy()
cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
# plt_show0(image1)

# 筛选出车牌位置的轮廓
car_contours = []
car_min_contours = []
for item in contours:
    # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
    rect = cv2.boundingRect(item)
    rect_min = cv2.minAreaRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # print(weight/height)
    # 440mm×140mm
    if (weight > (height * 2)) and (weight < (height * 5)):
        image = rawImage[y:y + height, x:x + weight]
        car_contours.append(image)
        car_min_contours.append(rect_min)
        # plt_show0(image)

car_images = adjust_image(car_min_contours,car_contours)
# for car in car_images:
#     plt_show0(car)

colors = []
color_images = []
for contour in car_images:
    color,image = recognition_color(contour)
    colors.append(color)
    # plt_show0(image)
    color_images.append(image)


for index,car in enumerate(color_images):
    if colors[index] in ("blue","green","yello"):
        car_image = car.copy()
        print(colors[index])
        plt_show0(car)

结语

项目到这里就算就算结束了。

部分代码也是借鉴别人的,像大佬学习,我也一直在优化,各种调参,但有些太倾斜,车牌在图片中显示区域偏小的也识别不出来,读者可以自己尝试修改代码,找到完美的解决方案。

字符分割和识别我还没有做,后面会学习的。